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1. Introduction terms of petit canonical ensemble. The function is in-
troduced in the latter way independently by Kirkwood

The present paper is concerned with a method of [3,4] and applied to the statistical mechanics of the

treating equilibrium and chemical reaction by in- condensed fluid in equilibrium. The functigj has,

troducing a set of conjugated statistical mechanical on the other hand, no corresponding thermodynamical

functions defined, respectively, as the factor of multi- quantity.

plication of the Zustandsumme caused by increasing In the present paper, we are going to introduce, in

a certain constituent of the assembly of interest or by extension of the theory gb® andg?, a complete set

imposing a microscopic constraint upon the elemen- of four conjugated functions and give several exam-

tary state of the constituent. ples of application of the equilibrium and chemical
Okamoto et al[1] have previously introduced the reaction.

functionsp® andg? of this sort in their statistical me-

chanical treatment of the hydrogen electrode process.

Among thesg’ is related, as shown later, to the chem- 2. Definitions and approximations

ical potentialy®, as

2.1. The assembly and parameters
1 = —RTlog p° y and p

which was originally introduced by Gibtjg] in terms Our object of treatment will be a macroscopic
of classical grand canonical ensemble, wherpds  assembly composed of molecules of several kinds,

is defined here, according to Gibbs’ terminology, in whose set of quantum mechanical Eigenwerts being
fixed by several independent parameters. The param-

* Appeared inJournal of Research Institute for Catalysis €ters may be the volume confining the total extension
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to direct macroscopic measurements, restrict micro-
scopic states of individual molecules. The macro-
scopic assembly will be denoted ldyin general.

The assembly will be termed in statistical equi-
librium when its properties are derivable from the
appropriate petit quantum canonical ensemble. The
Zustandsumme (abbreviated Zs hereafter) appropriate
to any equilibrium state of is expressed by

QC =) e Bk, (2.1)

where k is Boltzmann’s constant and, the nth
Eigenwert.

The molecule in the above sense may consist in any
elementary particles or any group of elementary par-
ticles bound closely together, however, not being nec-
essarily dynamically isolated from the environment.
By molecule will thus be meant hereafter not only
gaseous molecule in its original sense, but also such
an elementary particle or a group of elementary par-
ticles in a liquid phase under the strong influence of
surrounding ones or even such one bound chemically
on the surface of a solid.

2.2. Four conjugated functiong?, ¢5, ©,s), and
O (0)

We definep?® by

P’ = Q—CS

QCo
whereQCq is Zs of our assemblgg free, in particular,
from any microscopic constraints, ar@CS that of
CS, which is Co augmented by a molecule or a set
of moleculess with fixed external parameters. The
functiong? is defined by

5
A0
" QCy)

whereQC) 5 or QCs(q) is Zs of the assemblg? ;.

or C;(0), respectively, subject to the microscopic con-
straint, i.e. a particular elementary statéor a single
piece of molecul& or a sets of states each for indi-
vidual piece of a set of molecules is occupied hiyor
vacant. The elementary stateor the individual state
of the setoc may be a small cavity of molecular di-
mension confining the centre of gravity of a molecule

(2.2)

(2.3)
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or a certain quantum state for the energy or the mo-
mentum of the latter.

We define further two quantities in terms of the Zs’s
appeared irEgs. (2.2) and (2.33s

ch(a)
o]ef
and
QcC
O0() = QEE)O) . (2.5)

Oy (s) OF Oy gy has thus the physical meaning of the
respective probability that is occupied or evacuated
by §.

2.3. Extension of the definitions

The above defined functions may also be termed the
respective factors of multiplication of Zs caused by
the appropriate operationg? is thus the factor due to
the operation of adding to the assembly¢y with un-
constrained internal parameters bringing about thereby
an assemblng of the same description but with one
more constituent molecul® ¢¢ that of bringing one
additional§ up into vacanty of C, ) and @, ) or
Oy that of imposing the constraint upon the un-
constrained assemblyg or Co that a specified state
o is, respectively, occupied b§ or evacuated with
certainty.

With this interpretation above definitions may be
expressed in the forms

log p° = A, 5log QCo, (2.6)
10945 = Ag.0(0) 109 Q2Cs (o). (2.7)
log Oy (5) = Ae.o(0) l0g QCY, (2.8)
log &5 (0) = Ae,q0(0 109 QCo, (2.9)
or summarized as

logx = A, log QC, (2.10)

where 1 stands forp?, qg, Oy (s5) OF Og) and Ay,
when prefixed for instance to I@@C, gives the incre-
ment caused by the operation appropriate.tbor the
sake of having any meaning for the quantity with the
prefix, the assembly of interest must however be acces-
sible to the operation associated withit is meant by
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“accessible”, for instance, to the operation associated
with g3 that the assemblf; (o), CJ ¢, Or such other
haso free to accept or the operation associated with
B, s thatCo, C%’s are, not being constrained by any
prescribed condition, ready to access the operation of
filling up o with § with certainty.

We defineA; P as the increment of any property
P accompanied by the operatioft, upon the as-
sembly, and the quantity prefixed with,, ; for in-
stanceA , ; log QC as that of logQC caused by in-
creasingP alone by the amoum; P without virtual
operation.

These increment defined above will be called
first-order increments. Denoting any two of these
A’s by A; and Ap we define second-order increment
A1A2100QC = A1logQC(A2) — A1logQ and
A1A2P = A1P(Ay) — A1 P, whereC(A») is the
assembly brought about frofi by the operation as-
sociated withA, and P(A») the appropriate value of
P, it being presupposed that both and C(Ay) are
accessible to the operation;. Similarly, we define
higher order increments.

2.4, Approximations

Throughout the present paper, we will be contented
with the approximation of neglecting increments of
higher than second-order or power compared with the

Writing p1192 for the set of molecules; + &
according toEq. (2.2)in the form,

QC81+82 B QC81+52 chl

d1+82 _ —
QCo QC(‘;:L QCo

we have

81+82 __ .61 ,.0
piitiz = poipde

It may similarly be shown for a sétof several
molecules,

eI
8

consisting eacly, pieces ofs,,

g
P’ =TT

(2.12)
(i) We have similarly as in the case of (i),
Ap.o5) (10g QCo + A, 5l0g QCo)
= Ap,s5) 109 QCo,
or according tcEgs. (2.4) and (2.8)
oc? Co
Oy = 2 _ Lot (2.12)

Qc} QCo

increment of first-order or power except when the di- (jii) Any increment of logQC may be written in the

rect interaction between two molecules each at an el-
ementary statey or o2, respectively, specified, if at
all, by the two operations involved, such as in the case
whenA; = Ag g5 aNd A = Ag gy, IS signifi-
cant. If either or both of the operation are of the sort
A, 5, which specifies no elementary state, this excep-
tion falls of course off.

It follows that

() Aps,(logQCo+A, s, logQCo) = A, 5, l0g QCo.
But since according t&gs. (2.2) and (2.6)it
is
log QCo + A, s, 10g QCo = log chl,
we have,
Qg™ _ ocy
QCSl QG

form,

A, 10g QC=(A,logQC)p + Y Ap, ;. 10g QC,
J

where the(A; log QC)p denotes the increment
in the case when all propertig3;’s of interest
are arrested. Expandingp; » log QC in power
series ofA, P; and rejecting terms higher than
the first power, we have,

dlogQC
Ap; . 10gQC = LAAPJ»

and hence

Ay log QC = (A; logQC) p
|
N Z dlogQcC

A Pj. 2.13
3Pj AL ( )

J
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3. Theory
3.1. Interrelation among?’, g2, Oy and B, (o)

It follows immediately fromEgs. (2.2)—(2.5)

5 _ Os(5) s

- 3.1
@U(O)p (3.1)

If § consists in a single molecule ard a small
cavity of molecular dimension which restricts the cen-
tre of gravity ofs within, the above equation may be
written in the form,

ql/\o]|

1)
P’ =0,0—"—"—,
7960, /lo]

(3.2)
where|o | is the size of the cavity . As|o | approaches
zero, so doe®); ) unity and®.s)/|o| the limiting
ratio of the probability finding the centre of gravity of
the molecule of the kind in the cavity to its volume
or the concentratiotv?® at the point of convergence,
ie.
O,

N® = lim —2&

lo|—0 |O’|

(3.3)

Since p® should remain the same by definition ir-
respective of the arbitrarily assigned magnitude
|a|,q§/|a| tends to a definite value along with
O, /1o |. Denoting the limiting value byQ?, i.e.
putting

8
9s §
=< = Q°. 3.4
lo|—0lo| ¢ 34)
We haveEqg. (2.2)in the form,
Q‘S
P =5 (3.5)

3.2. Equilibrium relation forp?
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The statess?, 82, etc. will be called in equilibrium
with each other.
If §4, 88, etc. are, respectively, such sets of

molecules as
sA =Y "vidst, 8B =) vpel,
a b

i.e. consist, respectively, of', v?, etc. pieces of indi-
vidual moleculess?, 52, etc., we have b¥gs. (2.11)
and (3.6)

a b
[T =TT .

3.3. Force, work, and energy

(3.7)

We postulate that there exists a set of internal pa-
rameters such that by varying the latters continuously
independent of each other and of the external ones,
the microscopic state of constituent molecules is trans-
ferred from one to the other keeping the whole assem-
bly at every instant at the statistical equilibrium. The
assemblyCo may thus be converted int@;, sy or Cs (o)
and the assembly consisting of macroscopic assembly
Co or Cy(0) and a moleculé each situated outside the
influence of the other, i.eCo + 8 or Cy(0) + § may
thus be unified intaC§ or C? . All parameters in-
cluding internal and external ones will be denoted by
a,'s. We have then according t6q. (2.1)

QC a
KTlog 261 _ / (I, dag, (3.8)
Qe Xa: @,
where
_A(KTlogQC) Y, —(IE,/da,)e En/kT
®a 8aa - Z” e—En/kT
(3.9)

Suffixes | and Il signify two different particular
states of our assembly, andl) and «(Il) appropri-

Let the condition prescribed to the assembly be such ate values of the parametaers. The partial differen-

thats may exist in different states?, §2, etc.,0C?",
QC?", etc. are now of the same value, since it is the
immaterial for the Zs over all possible states of the
assembly, whatever statanay initially assume when
admitted. It follows byEq. (2.2)

54

p’ = p‘sB = etc (3.6)

tial coefficient—d E,, /9« is the force with which the
assembly atth quantum state tends to increase with
the parametew,, I1,, the statistical average of the
force, —I1,, the force to be applied from the exter-
nal world to the assembly to keep constant, and, in
consequence the left-hand sideEyd. (3.8)the work
required to bring up the assembly from the state | to Il
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keeping the latter throughout at statistical equilibrium. 3.4. The functions and associated relations in
The I1,, will be called the average force conjugated thermodynamical terminology
to the parametex, and the work the reversible work.

In the particular case when Provided that the statistical equilibrium fully de-
scribes the thermodynamical equilibriuskTlog QC
Ci=Co+38 and €y =C) may be identified with Helmholtz free energy ac-
cording toEq. (3.8)and E with the internal energy/
the left-hand side oEq. (3.8)is —kTlog p®,* which in thermodynamics, so that

equals the relevant reversible work on the right. The
function—kTlogq? is similarly the reversible workre- ~ # = —KTlogQC (3.14)
quired with fixed external parameters@f o, to bring and

ups from the standard state into the preliminarily evac- » 910g OC

uated state', and—kTlog &, ) or —kTlog O, (5) that U=Kk (3.15)
required to force upon the assemldly the constraint o
thato is, respectively, vacant or occupied Bywith We have immediately according Exgs. (3.14) and
certainty. The latter three reversible works naturally (3.15)
correspond to no readymade thermodynamical quan- 9F
tity because of its microscopically detailed nature. U=F-T—, (3.16)
These reversible works-kTlog p®, —kTlogg?, oT
—kTlog @,y and —kTlog®, are summarized, from Eq. (3.9)
according toEqg. (2.10) by 9F
-1, = , (3.17)
—kTloga = A, (—KkTlog QC), (3.10) daq
from Eq. (3.11)
or by
Al F = —RTlog (3.18)
—RTlogx = A, (—kTlog QC), (3.11) and fromEq. (3.13)
whereA|; signifies Avogadro’s numbe¥, times the ALU = Rﬂa log (3.19)
incrementA;,. T '
The temperf_;lture variation &@C at fixed externa_l or from Eq. (3.16)
parameter,’s is as well-known expressed according
to Eq. (2.1)in terms of statistical averag of Eigen- A/ — A, F — T AW (3.20)
werts, i.e. oT
,dl0goC Y, E,e kT _ Deflnlng the entropy to complete the thermodynam-
K" —— = S e BT = E. (3.12) ical terminology a$
o , . i i S= —a—F, (3.22)
Partial differential coefficients with respect fowith- aT

out suffix will hereafter be referred to fixed external
parameters. The temperature variation.ds hence-
forth expressed according Ens. (3.11) and (3.12as

2 The present argument is evidently valid in particular in the
case of microcanonical ensemble, when all quantum states have
the same Eigenwetf, . In that caseEq. (3.14)reduces, according
to Eq. (2.1)to the form,

dloga _
RT o = AhE. (3.13)

F =E, —kTlog Zl,

whence we have byeq. (3.21) S = klog )", 1. This is the
1 Since Q(Co + 8) may be factored a®Q(Co + 8) = QCr 98, quantum mechanical transcription of the well-known Boltzmann’s
we haveQC) /QC| = QCS/QCO by choosing a€ds = 1. relation.
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we have readily

OA|WF
AlS = — 8|7{ (3.22)
and fromEqg. (3.16)
F=U-TS (3.23)
or
Al F = AU — TA|,S. (3.24)

In the special case wheh = p’, the reversible
work —RTlog p® may be identified with the chemical
potential? in thermodynamics so that

w® = —RTlog p°. (3.25)

Egs. (3.18)—(3.20), (3.22) and (3.2then assume,
respectively, the forms, i.e.

(318  ub=F?, (3.26)
dlogp? -
319 RRI9P _ s (3.27)
aT
_ ou’
(3200 0% =pub— T%, (3.28)
_ ou’
322 §= _BLT’ (3.29)
324 W=0'-T18, (3.30)

where F®, U® and §° denote, respectivelyA|, sF,
AlpsU and A|,,,,;S3 and called in accordance with
G.N. Lewis partial molar free energy, partial molar
internal energy and partial molar entropy, respectively.

Our approximation (i), Section 2.4 assumes now
the form,

ud = Zpgﬂag
8

which is taken as a matter of course in thermo-
dynamics.

3.5. Thex for the assembly with variable external
parameters

In the foregoing sectioi’s have been defined with

regard to an assembly whose external parameters ar

J. Horiuti/Journal of Molecular Catalysis A: Chemical 199 (2003) 199-234

theory to the case when the external parameters of the
assembly of interest are not necessarily kept constant.

Let an assembly of interest, which exclusively
subject to the operation associated withis coupled
with anotherK according to the condition that (i) each
external parameter which is extensive property such as
volume, surface area, etc. is not fixed individually with
A and K but by the sum of thatg;, of A and that of
K, whereas external parameters of other kind is fixed
individually (ii) no force conjugated withg,’s acts
upon A + K from outside and that (iii) energy states
of either assembly is individually fixed dynamically
independent of each other at fixed valuesgpk. A
simple example of such an assembly is that consisting
of two gaseous partd andK sealed in a cylinder and
separated by a frictionless piston left free to move; the
energy state of the either gas may be taken as deter-
mined by the volume ofi, which is the only external
parameter of the latter proper, and no force conjugated
to the parameter is exerted by the external world.

We have thus in the assembiy K the special case
of that dealt with in the foregoing sections, for which,
of course, all definitions and consequent theoretical
developments remain valid. The same is true with the
assemblyA alone provided thag,’s are arrested. The
latter assembly will be denotedls.

We may thus define’s either with the assembly
A + K or with Ag specifying the assembl¢’ of
EQg. (2.10)to be eitherA + K or Ag. Former ones will
be calledr’s of assembly of variable external parame-
ters or simply those ofl + K and latters those ofg.

In the following section, we will first show the iden-
tity of the two series of’s of the alternative definitions
(Section 3.9 next transform’s of A+ K with special
reference to the interested assemilySection 3.§
and finally put the resulting expressions in compari-
son with those foik’s of Ag into thermodynamical
terminology Gection 3.8.

3.6. Identity ofA’s of the assembly + K and
those ofAg

The log A is expressed according tq. (2.13)in
the form,

e

kept constant throughout the operation associated With |og \ = A, log Q(A + K) = (A, log O(A + K))g

respectiver’s. We extend here their definition and

3 ¢f. Eq. (2.6)

A5 B,

3log Q(A + K)
+ Xb: — o5 (3.31)
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where suffix8 signifies the condition of fixeg;'s
and A, Bp the increments of8;,’s under the speci-
fied condition ofA + K. The differential coefficient
dlog Q(A+ K) /3By is however according tBg. (3.9)
the force conjugated t8, multiplied by 1/kT, which
vanishes according to (iigection 3.5i.e.

3log Q(A + K)

=0 3.32
T (3.32)

Eq. (3.37) we have

1 b
log QK = —— 4, dBy + log QK (o)
kT Z 6,(0) B

(3.39)

and substituting the latter in turn inteq. (3.36)

and hence the second term on the third member of 109 Q(A + K) =10g QA — — Z//; o dﬂb

Eqg. (3.31)vanishes.
The first term(A, log Q(A + K))g is expressed in
the form,

(A log Q(A + K))p=A, log QAg + (A, log QK)g,

(3.33)
where
(AylogQK)g =0, (3.34)
sinceA is only subjected to the operation.
We have byEgs. (3.31)—(3.34)
logh = Ay logQ(A + K) = A, log QAg (3.35)

which states the enunciated identity.

3.7. Expression of and derived quantities with
special reference ta

We begin with the expression fertkTlog Q(A+K)
with special reference to the assembly According
to (iii), Section 3.59(A + K) is factored in the form,

Q(A+K) = QAQK (3.36)

and QK in turn expressed according Ex. (3.8)as

1 bk
log QK = 1= Z I, dBy + 109 QK p(0)

Br(0)
(3.37)

where HK is the average force of the assemi®y
conjugated tgB, and Kg(g) the assembly fixed by
a particular set of valueg, (0)’s of 8,'s.

We have, on the other hand, accordingetys. (3.9),
(3.32) and (3.36)

g, + 14 =0, (3.38)

where 17;37 is the force of the assembly conju-
gated withgy,. Substitutingﬂéi from Eq. (3.38)into

+ Iog QKﬁ(o). (3.40)

Eqg. (3.40)expresses lo@(A + K) in term of vari-
ables appropriate ta\, log QKg) being thereby a
constant.

Egs. (2.10) and (3.40give now according to
Eq. (2.13)

logi = A, log QA — —Z/
B

1 A
- ﬁznﬂbA)‘ﬁb’
b

AAH dgp
5(0) P

(3.41)

WhereA,\Hgl is the increment of the forcﬂa due
to the operation associated with

The temperature variation @(A + K) and of is
now derived begining again with that @(A + K).
We have according t&qgs. (3.32) and (3.36)

dlogQ(A + K)

aT
_ (910gQ(A + K) d10g Q(A + K) 38p
_( T >ﬂ+2b: PBe oT
_ (dlogQA dlog QK
_( 9 >,3+< 9 )ﬂ, (3.42)

or expressingd log QK /dT)g by Eq. (3.39)

kT2 <3IogQ(A+ K)>
oT P

dlog QA By
= kT2 <;—T) + Z 1} dpy
g

SN

3log QK
ﬂb db +sz< 0g Q ﬂ<0>) ’
9T p

(3.43)

Br(0)
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where the partial differential coefficient without suffix

denotes those under the specified conditiod of K

in distinction from those with suffiy8 at fixed 8,’s.
The temperature variation afis expressed accord-

ing to Section 2.4Egs. (2.10) and (3.43s

dlog A
oT

=kT2AA<8logQA) Z/ A ITS dBy
By (0)
anA
+2nﬁbm—rz [" a

ﬂb dIBb
1Y
b

Eq. (3.44)is of course directly obtained by the dif-
ferentiation ofEq. (3.41) The temperature variation
of 1 defined with respect to assembly is expressed
according toEgs. (2.10), (3.34) and (3.3@s

| log QA
|<T2<a ng> — KT2A, (_a 09Q ) .
or ), o ),

ComparingEg. (3.44)with Eqg. (3.45) we see that
whereas\’s of the two alternative definition are iden-
tical as shown irBection 3.6their temperature varia-
tion are different in general.

KT2

Br(0)

7 (3.44)

(3.45)

3.8. Thermodynamical form afs and associated
guantities for the assembly of variable external
parameters

We first write down Helmholtz free energy and the
internal energy, respectively, accordinglq. (3.14)
and toEqg. (3.15)of the assembliesA + K, A and
Kg(0) with appropriate subscripts, i%e.

F = —kTlog Q(A + K), (3.46.AK)

Fk g = —10g QKg0), (3.46.K)
| A+ K

U= sz%, (3.47.AK)

4 ¢f. Section 3.5

5 External parameters ol proper must be fixed at the partial
differentiation for obtaining the internal energy df with regard
to the implied condition of the general expressigg. (3.15)

J. Horiuti/Journal of Molecular Catalysis A: Chemical 199 (2003) 199-234

log QA
= kT? <_a 09 Q ) , (3.47.A)
dlog QK
U o) = k2109 9Ks0 (3.47.K)

aT

Thermodynamical forms are obtained by simply
rewriting expressions obtained in the previous section

in terms of F's andU'’'s as follows:

b
(3.40) F=F4+ Z HEL dBy + Fk .0,
p VPp
(3.48)
(341)  —KTlogr= A, Fa + Z T4 Ay
+ / A IT4 dBy,
Z Bo
(3.49)
dF b
(343 U=F—-T— =Us+ 14 dBy
T Z Bo
_r /
Z B (0)
(3.50)
dlogx
@44 kP9 A ua+ > I ABy

b

Bp
+ f ALITS dBy
Z 6,(0) Bp

(3.51)

3.9. Thermodynamical form o&fs and derived
quantities for the assembly,,

Thermodynamical form of—kTlogQ(A + K),
—kTlog, kT?(dlog Q(A+K)/dT), andkT?(3 log 1./
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oT) derived in the previous section with special ref-
erence to the assembly correspond in general to no

207

In term of these “ready-made” thermodynamical
functions previous equations are, respectively, rewrit-

ready-made thermodynamical functions except when ten as follows®’

» = p® andA = Ap or when only external parameter
of A is the volumeV, and the conjugated average
force the pressur@, is kept constant independent of
V4 andT.

Thermodynamical form in the previous section are
developed later with this particular case tifat Vy4,
T4 = P, = constant, and. = p® or —RTlogx =
w?, first rewriting the expressions there as follows:

(317 Py =-— (%)T , (3.52)
(348)  F = Fs+ PaVa + Fk.v,o0, (3.53)
(349 b =F, + PaV], (3.54)
(3.50) U=F-T2-§=UA+PAVA

+ Uk, v,=0 (3.55)
(351 i - Taai: = U3 + PAV3. (3.56)

Fk.v,—0 andUk v,=o give, respectively, particular
values OfFK’ﬁ(Q) and Uk g0 atg0) = V40 =0
and

Fi = A|pFa, (3.57.F)
US = Al,Ua, (3.57.U)
V3= Al,Va, (3.57.V)

are partial molar quantities at the particular condition
of A, i.e. at the constant pressure.

We see the variable parfy + P4V4 of F in
Eq. (3.53)correspond to Gibbs’ free enerdy,, that
Uyg + P4Vy of U in Eq. (3.55)to the enthalpyX 4,

F§ + P4V$ of Eq. (3.54)to the partial molar quantity
Z% of Z4 andU3 + P4V} of Eq. (3.56)to the partial
molar enthalpyX’, of X4, i.e.

Za=Fa+ PaVa, (3.58)
Xa =Up+ PaVa, (3.59)
Z% = FS 4 P4V3 (3.60)
and

X% = U3 + PaVy. (3.61)

dZ4
352 =24) =y, 3.62
a2 (57) =i 362
(354 b =275, (3.63)
3z
(355  Za-T224 — x,, (3.64)
aT
s o’ )
(356) ud-T— =X5. (3.65)

oT

Incorporatingegs. (3.62) and (3.63we have fur-
ther

N —w
Py T

These relations are obtained in alternative forms by
introducing the entropy, of the assembly proper,
according toEq. (3.21) i.e®

(3.66)

oF,
Sa=— <—A> . (3.67)
oT )y,
We have thus fronEq. (3.58
0Z 4
Sp=—, 3.68
A 0T (3.68)

6 ExpressingdZ,/d P4)r by differentiation ofEq. (3.58)in the
form

dZ aF, av, av,

(57), = (), (), =7 (), + v
3Pa )y \8Va)p\8Pa); 3Pa )

we haveEq. (3.62)from Eq. (3.52)

7 SubstitutingF into Eq. (3.55)from Eq. (3.53)and observing
Egs. (3.58) (3.59) and the relation

dFk v,=0
aT

Fxv,=0—T = Uk,v,=0
valid as a special case &q. (3.16)we have the above relation.

8 The external parameter of proper, i.e. the volume must
be kept constant at the partial differentiation with regard to the
implied condition of the general expressiéu. (3.21)

9 According to the identity,

OFA\  _(DFa) L (0Fa) (2Va

T )p, \ 0T Jy,  \dVa)p \ 3T /p,
and Egs. (3.52), (3.58) and (3.6Me have above relation, where
(0Z4/3T)p, is expressed without suffix.
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from Eq. (3.64)

Za+TS = Xa, (3.69)

from Egs. (3.68) and (3.63)

_ 8#5

S6=——- 3.70
h= o (3.70)

and fromEgs. (3.63) and (3.69)

b+ 7185 = X5, (3.71)

where partial differential coefficients without suffix
and the partial molar quantity, are all referred to the
specified condition ofi p, i.e. to the constant pressure.

We rewrite these relations for partial molar quanti-
ties of A for the sake of later applications dropping the
subscriptA signifying instead explicitly the specified
condition by suffixP,

wb = Z5, (3.72p)
au’ .

(L) -y (3.72.5)
aT ) »

b= X4 —T85. (3.72.E)

Corresponding relations fady of the assemblyA,
whose only external parametéris fixed, may be writ-

ten down as follows as the special case of those given Xp = Uy + Tﬁ Vi

in Section 3.4 signifying explicitly the constancy of
the volume, i.e.

w = Fy, (3.73p)
aud .

(L> = -3 (3.73.9)
aT /),

and

w =0y - TS5, (3.73.E)

The relation between two groups of partial molar
guantities appearing, respectively, Egs. (3.72u),
(3.72.9), (3.72.E), (3.7R), (3.73.S) and (3.73.Bp
developed as follows.

Itisimmediately transposed froEys. (3.60), (3.61)
and (3.66)that,

Z% = Fp + PV}, (3.74.2)

X% =U% + PV}, (3.74.X)
A’ -

(i> = V8. (3.74.V)
P ),
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It follows on the other hand from the identity pf
or u? of the assemblyA p with that of Ay as veri-
fied in Section 3.6and according t&gs. (3.72.E) and
(3.73.E)
W= X5 — T8 =0 —

TSY. (3.74p)

We derive fromEg. (3.72.S)

5--(2), (), (), (2),

or according tdegs. (3.73.S) and (3.74.\§nd to the
relation

(),

_ o -

_@/V)@v/aT)p
1/v)@V/aP)r’

(3.74.9)

where

v\ar), oP

are the expansion coefficient and the compressibility
respectiveley.
FromEgs. (3.74.S), (3.74) and (3.74.X)we have

(3.75.X)

S

and

(3.75.U)

Finally, we derive fromEgs. (3.72.S), (3.74) and

(3.74.V)
aT
P

v o
8XP 2‘78
aP P
T

3.10. Statistical thermodynamics of homogeneous
fluid

(3.76)

We call such an assembly or such a special part
of an assembly a homogeneous fluid that only exter-
nal parameter is volume an@d® of every constituent
molecule is, respectively, constant all over the space,
depending only on temperature, pressure and on the
composition but not on its absolute magnitude.

A homogeneous fluid is called ideal solution with
respect to certain components @ of the latters
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are independent of any concentration of these compo- Denoting the sumz‘i” + n‘i; by n®% we have forF
nents. The latters are called ideal components, the ho-of the whole assembly

mogeneous fluid ideal with respect to the components

and the homogeneous fluid consisting of remaining F = Fa + Fg = n*°u% + Zn i

components the solvent. We may expect a homoge- i

neous fluid is ideal with respect to a component which
is dilute enough so that the workkTlog ¢¢ and hence
0? of every constituent is constant independent of the
concentration of the dilute component.

A homogeneous fluid is called a perfect gas or sim-
ply a gas if the latter is ideal with respect to every
component.

Following are deduced from the above definition.

Let an ideal solutionA with respect to a compo-
nentép be separated from its solveBt consisting of
81, ..., 8; by a semipermeable membrane which is im-
permeable only tép. The whole assembly is consid-
ered as in equilibrium at a constant volume, @hiig
enough so that the shift of the membrane practically
makes no difference in its pressure nor in composition.

Since 0%’s and hence:®’s according toEgs. (3.5)
and (3.25)depend only on the pressure and composi-
tion but not on the absolute magnitude of the fluid at
constant temperature, Gibbs’ free enefygf a homo-
geneous fluid is expressed accordingem. (3.72)
in the form,

Z = Zn‘slﬂ‘si
i
and henceF according toEg. (3.58)

F = Zn‘s",ufs" — PV,
i

wheren? is the number of moles of;.
The F of the partA or B is now, respectively,
expressed as

(3.77)

=S

Faq = n5°u8° + Zni{,ui{ — PaVy4 or
i=1
i=s

Fp = n‘so,ufs0 + Zn%u%"
i=1

— PgVp.

Because of the assumed equilibrium we have, how-

ever, acccording t&gs. (3.6) and (3.25)

pl =l =p¥ =constant i=1,...,s. (3.78)

— PaVys — PpVp. (3.79)

Differentiating F with respect toV, we obtain the
average forcdT% = P, — Pp conjugated withV/4 or
the osmotic pressure,

OF audo
Pa—Pp=— () =_pho(ZE
oVa/r oVa ) r
+Pa— Py Vi (224
A B A 8VA
or
P dudo
vu (A —n50 i (3.80)
aVa aWVa ),

with regard to the relation thdt, + Vz = constant.
According toEgs. (3.5) and (3.25) e have

n® = pu$ + RTlog N? (3.81)
where
ul = —RTlog Q° (3.82)
and hence notingV® = n%/v,,

1)
(), = (55t) (), -5 oo

inasmuch ag®?® of the ideal component is the func-
tion only of pressure at a constant temperature.
(au 0/dP4)7 is obtained fromEqg. (3.81)as

3o =8 aﬂlo

=V = RTBa4, 3.84
<8PA>T P (apA T+ Pa (3.89)
where

dlogVy
IBA__( dPy )T

is the compressibility.

By Egs. (3.80), (3.83) and (3.84ke have
<8PA) n%RT

WVa)r  Va(Va —ndoV 4 nboRTBs)
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or by integration, remembering that’ = P, — Pg, or taking the fact thereby thaty = 0 or IT = P4
into account and dropping subscript
bo _ > dVa

IT°° = n°RT =3 s i=s
Va Va(Va = nPoVy? + n®oRTB,) PV=) n’RT, (3.92)

(3.85) i—0
provided thatP4 = Py at V4 = co. i.e. the ideal gas law. It may be noted tliag. (3.90)
If n%RTB, is negligible compared with, —n% Vf,” is conversely satisfied bq. (3.91)inasmuch ag =

1/P and V% = RT/P according to the latter.

and Vﬁo is constant independent &fs, which might ) _
For a general homogeneous fluid we defiﬁ%l,

be the case for a colloidal solution® V2 being the _ _
: P : FS ., andZ ., as
total displacement volume of the colloidal particles, *p,1 Pl

Eq. (3.85)assumes the form with regard to the relation 133 L= 1:-3 — RTlog N®, (3.92.V)
Noo = pbo/y,, ’
= ) s
RT _ Fp = Fp —RTlogN°, (3.92.P)
M = ——log (1 — N®V}9). (3.86) r F
vy Z4,=Z% —RTlogN’. (3.92.2)

Eq. (3.86)might be useful for the determination of |t follows immediately fromEgs. (3.72u), (3.73p),
the molecular weight of theH(r:SoIIoidaI particles by (3.74.7), (3.81) and (3.82)
analysing the measurement of° at different con- s =8 =5 -5 55
centrations, whereby the displacement volurffe/2° mMm=Fya=Fpat PVp=2p, (3.93w)
is simultaneously determined. and fromEgs. (3.74.V), (3.92) and (3.98)

If n% V72 — n%RTB, is negligibly small compared 9 Fd 970 i
with V4, we have fromEq. (3.85) ( V’l) = ( “) =V, —RT8, (3.93.P)

T

RT JP JaP
Jo
% = n' v (3.87) remembering that,
If ideal componentsy, . . ., §; are confined together s n’
. e oS N° = —. (3.93.N)
in the spaceA, we have by similar reasoning instead 1%
of Eq. (3.85) 8y, andS3, | are defined as follows:
e Z:: dva Sy1 =5y + RlogN®, (3.94.V)
8 _ _ _
s Vatwa- YiZon" (VE-RTBO) 5 _ 58 4 Rlog. (3.94.P)
(3.88)

] it 5 o6 . We have on the other hand differentiatipg of
and instead oEq. (3.87)if } ;. Zon® (V' —RTBa) is Eq. (3.81)with respect toT, respectively, with con-

negligibly small compared witly4, stantV or P
i=t s 8
RT o ou
1= Zn’S (3.89) <ﬁ>v = (8_T1> + Rlog N?, (3.95.V)
1%

sembly is ideal with respect to every component we \ 97 P T

have according to our definition tha(*au °/0P)T =
0, since the pressure varies nothing but the concentra-It follows from Egs. (3.72.S), (3.73.S), (3.94) and
tion of ideal components. We have hence according to (3.95)

Eq. (3.84) o (o S,
~ 5 . SV’]_ - ) ( . . )
RIB—V) =0, i=1...,s (3.90) aT

H - /9 § 9 )
In the further special case of a gas, when the as ( W ) _ (ﬁ) _RTu+ RIogN’. (3.95.P)
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Shy=— <8a—“Ti>P + RTu (3.96.P)
and fromEgs. (3.74.S) and (3.94)

$5, =51+ %V;E. (3.96.5)
Uj 1. Up 4, andX$, | are now defined as
Upy=F),+T5) ;. (3.97.))
Udy=X%,+ PV}, (3.97.W)
X1 =25,+T5,. (3.97.%)

along with the expressions, respectively, &, U3,
famd)_(% as derived fronEgs. (3.72), (3.73) and (3.74)
i.e.

Uy = FS +T8S9, (3.98.U))
US = X% — PV}, (3.98.Lp)
X% =Z% +TS5. (3.98.%)

If follows from Eqgs. (3.92), (3.94), (3.97) and (3.98)

Uy, =0y, (3.99.Uy)
Upy=Xp, (3.99.Wb)
X1 ="0Up (3.99.%)
and hence fronegs. (3.75), (3.76) and (3.99)
pl—Uv1+TﬂVp, (3.100.X)
Upy=Up,+ (T% - P) vy, (3.100.U)
X4 ) 7
P2) =vp-T (2 (3.101)
oP . 9T ,

In the case of ideal solution for whigkf, is constant
at constanf” and P the above quantities with suffix 1
are all similarly constant independent 8f provided
thata andp are constant or their shift with? is neg-
ligible, as it follows from the above definitions and
derived relations? It is usual to regard these quan-

tities the properties of the standard state of the ideal

0 Fy .. (9F) ;/aP)r and henceV} are constant according to
Eq. (3.93.P)independent ofN®. Hence, it follows from other
relations the same is true with all quantities suffixed with 1.
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solution whereN? = 1. Here we should rather treat

these quantities as the properties of our homogeneous

solution itself, if ideal or not, than have recourse to
the standard state.

In the case of a gas, the independencwpf and
hence ofV} is strictly secured with the following par-
ticular values as derived fromg. (3.91)

1
o@=, (3.1020)
1
== 3.102
P=> ( B)
_. RT
V)= - (3.102.V)

Egs. (3.93), (3.96), (3.97), (3.100) and (3.10w
assume the particular forms:

(3.103p)

(3.103.)
Ub,=Up,=X%,—RT (3.103.U)
ax?
P11 —o (3.103.X)
oP |,

4. Application-1. Equilibrium
4.1. Bose-Einstein and Fermi—Dirac statistics

Assuming both Bose-Einstein and Fermi—Dirac

gas are as a whole describable by an appropriate

petit quantum canonical ensemble, the mean pop-
ulation or the distribution functionf; of quantum
stateo, of energye, for individual moleculess’s is
given by

(0 X Og,0) + (1 X Oy, (s))
+(2 X Ogy25)) + (3% Ogy(35)) + -+ -

O, (0) + Oo,(5) + Oo,(25) + Oy (35) + -+
(4.2)

fs=
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where O, (,5) denotes the probability that pieces
of §'s simultaneously occupy the elementary state
which vanishes fopr > 1 according to the Pauli prin-
ciple in the case of Fermi—Dirac gas.

Osws) In the case of Bose—Einstein gas may be

J. Horiuti/Journal of Molecular Catalysis A: Chemical 199 (2003) 199-234

or substituting®,, (,sy from Eq. (4.6)into Eq. (4.1)

_ O x D (x(gh, /P ) +@x(gh /0D + -
- 1+(q8 / p®)+(qd /P2 + - - .

N

4.7
written according to the definitiorisgs. (2.4) and (2.5) 4.7)
8 B (v=1)8
Os,(v8) = QCo,0 Lo 08 _ Oo, (0) (QCo,/QCa0) - (chs(vé)/gca‘:«wm)) 4.2)
Os - — Yoy — . .
QCo  QCy,(0) (QCY s/ ch(u?)s) L (QC2 15/ QCo, )

The denominator of the third member Bf. (4.2)
simply equals(p?)¥ according to the approximation
of Section 2.4 provided thab is not very large.

The first factor of the numerator equqiﬁ accord-
ing to Eq. (2.3) i.e. ‘

- 9@
7 QCo 0

which may be evaluated as follows: Since Bose—
Einstein statistics attributes the same statistical weight
to every possible distribution a¥ molecules in the
gas over all elementary states and to the total en-
ergy, the sum)_, v;¢; of individual energies;’s of

all molecules, respectively, at quantum state’s,
QCy, (0) is the summation of Boltzmann factors of
>, vi&; over all possible distribution o molecules
with the constrainty, = 0, i.e. that of N molecules
over all o;'s exceptoy. chx(a) is similarly that of

N + 1 molecules with the constraint = 1 or that

of N molecules over alb,’s excepto; which holds

(N + 1)th 8. It follows that there is one to one corre-
spondence between Boltzmann factors of the two se-
ries relevant, respectively, '@C(‘; 5) and toQCo, (o)

so that every one of the former series differs from the
corresponding one of the latter by a factor®eKT.

We have thus

(4.3)

QC), 5 = Qo0 KT, (4.4)
or according tdeq. (4.3)
g} =e =k, (4.5)

It is shown similarly the remaining factors of the nu-
merator equalqﬁs or e /KT 5o far as the premise of
the Bose—Einstein statistics goes.

We have hence in place &fq. (4.2)

Oo,(vs) = (

8

2
5
— | G0, 0
p) 7

é (4.6)

Owing to the above approximatiofy is given by
Eqg. (4.7)only when the power series of the numerator
and denominator converges@®, /p°)" for largev is

insignificant. In that case wheyg /p® < 1 Eq. (4.7)
is written in the form,

qs./p°
1-45/p°
or expressing;} by Eq. (4.5)and p° by the corre-
sponding reversible work = —kTlog p?,
e

fs:

(4.8)

Remembering, on the other hand, tiéa, .5y = 0
for v > 1 in the case of Fermi—Dirac gas, we arrive,
by a similar reasoning but without resorting to the
approximation as above, at the distribution function,

fv — (e(é‘s—é)/kT_,r_ 1)—1
4.2. Homogeneous equilibrium

The equilibrium relationEq. (3.7) readily affords
the equation,
a )Vf

A(E) -

for the equilibrium between two sets of components,

sA =Y "vilsd and 8% =1 vpisp
a b

0%
N

0%
N3

(4.9)

in a homogeneous fluid by substituting’ from
Eq. (3.5) or

- l—Ib(Nﬁf)vf 3 Hb(QSE)UE
COTavEyE Ty

Kn (4.10)
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where Ky is a constant independent ofi’s or the within which the potential energy being constantly

equilibrium constant provided thaf''s are all ideal lower than that in the homogeneous fluid &y, we
components', have by similar reasoning as in the caseeqf (3.4)
g5 = |o|QPet /KT, (4.14)

4.3. Heterogeneous equilibrium-1
Substituting the above expression bg. (4.13)the
We treat in this section the simplest case of het- latter assumes a more familiar form,
erogeneous equilibrium, i.e. the equilibrium between ¢ e KT s
molecules of one kind adsorbed each on one of iden- 75 = loje " N", (4.15)
tical sites on a crystal surface and the molecules of ) ] o
the same kind in a homogeneous fluid. Our model of Which gives the Langmuir's adsorption isotherm.
the crystal surface consists in general of small seg-
ments of lattice planes, each lattice point or a certain 4.4. Heterogeneous equilibrium-2
set of lattice points on any one of them providing a

site o4 for an adsorbed molecule whe@ or N¢ in We proceed in this section to a bit more complicated

Eg. (3.5)is concentrated, each segment being however case whers in the homogeneous fluid splits, when

big enough so that geometrically congruerit’s on adsorbed, into two party’s each occupying a site as

that segment are practically physically identical. an adsorbed molecule in the foregoing example. The
Because of the equilibrium we have according to equilibrium relationEqg. (3.7)is now

Eqg. (3.7) 2 = (o)

8 — S
P P which gives, wherp? and p® are substituted, respec-

wheres, or 8, denotes adsorbed molecule or that in tively, from Egs. (3.5) and (3.1Xhe relation
the homogeneous fluid, respectively. Expresspig

: 8
by Eq..(3.1)andp8h by Eqg. (3.5) we have, dropping s (0) g _ Q_a (4.16)
subscriptsz andh, Os(5) N
Oos) _ s N° 4.11) Eliminating @50, and O, from Eqg. (4.12) and
B0 0) Tl ps” : (4.16)as in the foregoing section, we have,

If any site is either occupied by, or else evacuated 1—6 0’
with certainty, we havé 5 —\Vw (4.17)
0 =05 =1— 040, (4.12)

4.5. Heterogeneous equilibrium-3
where 6 is the degree of adsorption identified with

Os5)- In this section, we treat another case, when any
Eliminating ®, sy and®a, o) fromEgs. (4.11) and  one of identical sites is either vacant or occupied by

(4.12) we have any one of molecules of the several components of a
0 4 homogeneous fluid.

— = 2o NS, (4.13) We have immediately

1-6 0’
Introducing a further approximation that each @50 + Z o =1, (4.18)

molecule adsorbed on a site behaves like that in the '

homogeneous fluid in a cavity of the magnituide, whereas for individuab; similarly as in the case of

- Eq. (4.11)

11 SeeSection 3.10 5

12 This can not be the case whéris allowed to occupy any site o 51) _ 8 £ (4.19)
which partly overlaps with. Os(0) 1o Qs )
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and henceforth fronkqgs. (4.18) and (4.19)
g0 N/ Q"

1+ Y g0 Noi / Q%

where9; is the degree of adsorption ith component

identified with @, s,).

Substituting the approximate expression tgﬁ‘
from Eq. (4.14)we haveEq. (4.20)in the form,

|O_|N61 e—&‘ai /kT
i = )
1+ Y, [o|Ndie /KT

whereg,, is e, for §;. An expression identical with
Eq. (4.21)is arrived at by Hicke[5] by a special
reasoning.

6; = @0(3[) = (4.20)

(4.21)

4.6. Heterogeneous equilibrium-4

In this section, we develop a method of deriving the
adsorption isotherm allowing for the mutual interac-
tion among adsorbed molecules.

Our method will first be exemplified with the case
when the molecules’s of only one kind from a ho-
mogeneous fluid are adsorbed in equilibrium each on
one of the identical sites’s allayed on a plane square
pattern, the interaction being significant only between
directly neighboring adsorbed molecules.

We denote our assembly, consisting of the adsor-
bent attached with a definite number 8§ and the
homogeneous fluid, bg with appropriate subscripts:
Coo0) OF Coqs) thus denotes that with its particular
site op evacuated or occupied, respectivedy, ) or
Cs,(5) that with oy, one of four direct neighbors efy
numbered by = 1, 2, 3 or 4, evacuated or occupied,
respectivelyCx ) that with the set of all five sitesg
ando;’s denoted byx, are evacuated, and final§o
that without any such constraint.

QCo is now expressed in terms 6fs (o), p°, g o,

&, andn, the latter two as described later taking care
of the mutual interaction, as

qa 10+-+1a
0
QCo=CPQx (0 (%)

o 173 p

,,,,,

x gto(t1+~“+t4) f14-+ig ;

n (4.22)

whererg, etc. denote, respectively, 1 or 0, according
asoy, etc. is occupied or noy_,  the summation
over all possible sets of values gf etc.
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We see with regard thq. (4.22)thatg] o/ p® would
give the factor of multiplication of Zs when one &fs
picked up from outside and planted on any vacant site
of %, and hence)", (g o/p®) "+ the factor
to be multiplied toQCx ) for making up QCp if
the mutual interaction were absent. The fa¢ar n
gives now the extra factor of multiplication either due
to the interaction of each adjacent pair of adsorbed
molecules insid&, or due to the interaction between
one of them and others outsidg respectively. They
may differ from unity except fopg and is the same
for o1, 02, 03 andoy4 because of the symmetry &f.
Carrying out the summation we have

4
a5 on
§
5 4
qo,OTIS
(1+ o ) .

QCsy0) OF QCsys) IS given, respectively, by the
first or the second term on the right-hand side of
Eq. (4.23) which is the part of the summation of
Eq. (4.22) respectively, corresponding t9 = 0 or
ro=1,ie.

QCo= QCx(0) (1 +

8
qJ,O
pé

+ QCZ(O) (4.23)

S 4
950"
QCoy0) = 2Cx(0) <1+ ;5 ) , (4.24)
s s 4
45,0 45015
QCo5) = QCZ(O)% <l+ 0}75 ) . (4.25)

QCy, (0 is given as the part of the sum corresponding

tot;, =0as
>3

(4.26)

QCs, 0 = 2Cx(0)

)
n
X 1+ qg’g
p

3 5
q
+a;SO
p

The degree of adsorptichor Oy s) iS Now given
according toEgs. (2.4), (4.23) and (4.2%) the form,

H)
n§
(:I__i_qg,otS
p

0 = Ogq(s)
_ @ o/ P+ g} gn/ pP)*

T (@2 o/ P+ G gnE P+ (L g2 gn/ PP
(4.27)
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We now deduce in accordance with Beflég¢ and
Peierls[7] that QC,,0) must equalQCs, (), Since
oo and o are physically identical, i.e. according to
Egs. (4.24) and (4.26)

2 on\*
p
8 3 5 5 3
n né
—<1+q""§J ) Jr"L’S‘)(lJrq"’o(S ) . (4.28)
p p p

Eliminating n from Egs. (4.27) and (4.28)e haved
as a function ofp®, ¢ , andé.

The p® is given by the equilibrium relation as in
Sections 4.3 and 4.4ds the function of the concentra-
tion or pressure in the homogeneous fluid. 'ﬁﬁ’% is
according to the definition given as the ratio@h/?
to QM, where M? is the adsorbent in the fluid with
only oned adsorbed atb and M the latter without
adsorbds.

With the approximation that thé and the rest of
the assembly are each at thermal motion reciprocally
in the mean potential field of the other and that the
height of energy levels off proper above the energy
at rest remain unchanged by adsorbiyg@@M? may
be expressed by factors as

oOM? = QMe=*0/KTQs
and hence we have faf

5 _ 9OM;

9.0~ Gy = e~*0/kTQs,

(4.29)
where Q6§ is the Zs ofs§ moving in the mean poten-
tial field of M or the sum of Boltzmann factors of
Eigenwerts referred to the minimumpp of the mean
potential.

The factor¢ is estimated again with the approxi-
mation that each of the two adsorbed molecules inter-
acting moves reciprocally in the mean potential field
of the other, the height of individual energy levels
above the minimum potential energy remaining unaf-
fected by the interaction. The interaction contributes
thus simply a constant term to the Eigenwerts of
the whole assembly or a constant facfoe= e /T
to the Zs. The& may thus be obtained by evaluating
u properly.
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Okamoto, Horiuti and Hirot@l] estimatedyf,’O and
& after this manner in developing their theory of the
hydrogen electrode process.

The present method may readily be extended to the
case when the pattern of sites is of less symmetry and
the allowance is made for the interaction between re-
moter molecules than directly neighboring. Attributing
different extra factor of multiplication to every sym-
metry class ob,’s appropriate to respective symmetry
operation with respect t& and differents to every
pair of sites of different relative position iB, QCp,
QCGS(Q), QCO'O(O) and QCUO(g) are given byQCE(o)
multiplied by a function ofp®, ¢° o, n’s andé&’s.

The degree of adsorptiohis given as in the pre-
vious cases byQCy,5)/QCo Which is expressed in
terms ofqg’o, p’, n’s and&’s. But since we have so
many different expressions f@@Cy, ) as the num-
ber g of symmetry classes af;’s as well asQCy,(0)
which are to be set equal to each other, we haie
dependent relations amopgs, p°, ¢] , and’s. Solv-
ing n’s therefrom and substituting the latter into the
expression fop, we haves in terms ofp®, ¢2 o, and

£’s. Sincep? is in turn determined by the equilibrium
relation, we obtain estimatir@0 andé&’s properly as
in the previous cas®, as a function of the concentra-
tion of molecules in the homogeneous fluid, i.e. the
adsorption isotherm.

An actual calculation by the method outlined above
will be pressented in later papers.

5. Application-l1. Chemical reaction in general
5.1. The scope and procedure of application

At the present stage of the chemical kinetics a re-
action is taken as the overall result of a sequence of
elementary reactions, the sequence, which adequately
describes the experimental result in conformity with
the stoichiometrical relation or the chemical equation,
being called its mechanism. According to the postu-
late is our procedure now the statistical mechanical
description of the individual elementary reactions and
hence of the overall rate synthesizing the latters.

Another postulate underlying to the current proce-
dure in the chemical kinetics is that the rate of elemen-
tary reactions is determined at a given temperature and
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external parameters solely by the momentary chemi- We call, on the other hand, the set of elementary
cal composition of the assembly involved not depend- particles involved in the elementary reaction generally
ing on the history or explicitly on time. We might the reaction complex and that at the state before or af-
advance amplifying the latter a postulate in its place ter the elementary reaction in particular the initial or
in detailed statistical mechanical terms thus affording final complex in distinction, respectively, from the re-
an exact basis for the application of our procedure. actant or resultant of the overall reaction. The initial
Consider an assembly which would be derived from and the final complex are in general taken as consist-
the observed one if left standing under the prescribed ing, respectively, of eacbj pieces of moIecuIe&}I and
external condition to attain an equilibrium. The ele- eachv? ones of(sl!: that
mentary reaction will be there going on in either direc-
tion more or less fluctuating the chemical composition. §' = Z I (5.3.))
The canonical ensemble of the assembly at equilib- i
rium will of course consist of overwhelming majority |: EoF
of examples of the chemical composition close to the & = Z Vil (5.3.F)
average at equilibrium, but a few, if exceptional, will f
have the chemical composition of the observed assem- The simplest mechanism is that of the reaction con-

ply, where so-called irreversible reaction is in gener.al sisting of only one elementary reaction. The reaction
in progress. We postulate now that the chance with ot this mechanism will be called the simple reaction.

which a particular elementary reaction occurs to the |, general, however, the sequence needs not even be
assembly as well as its momentary properties is given 5 consecutive one but branched, multiple one so that
as the average over that part of the ensemble which go\ 615 different courses are available for a reactant to
happened to have the momentary chemical composi- y555 into the resultant. The type of sequences or the
tion of the assembly. o mechanism of the reaction going to be dealt with is
We call the assembly in thermal equilibrium if thus ,a¢ inclusive of the simple reaction, of the steady re-
describable and the corresponding part of Zs that of 4¢tion with a rate-determining step proceeding at ther-
the assembly. In terms of the Zs we defik's of mal equilibrium.
the assembly just as in the case of those in complete |, section 5.4we express the rate in terms .

equilibrium. Taking the fixed chemical composition the expression is now ready for various particular
as the microscopic constraint the whole theoryiof applications in later sections.

developed irSection 3is applicable for the assembly
at thermal equilibrium.

After we have defined in the next section the reac-
tion of the particular type we are going to deal with,
we advance irSection 5.3the expression for the rate
of the elementary reaction at thermal equilibrium de-
rived on the basis of the above postulate.

The overall chemical reaction to be composed of
elementary reactions is generally expressed by

5.2. The steady reaction with rate-determining step
at thermal equilibrium

It is meant by steady reaction such one as that
the rates of creation and consumption of every inter-
mediate product are practically balanced and by the
rate-determining step an elementary reaction which is
necessary for the reaction to proceed at all and has
st =R, (5.1)  a negligibly small rate in either direction compared
with that of any other constituent elementary reaction
of the reaction.

The following may be inferred from thus detailed
definition.

wherest or §R denotes reactant or resultant consisting
generally of each} pieces o5} or of eachuR pieces
of 8%, so that

L_ LsL
&= Z Vi ér s (5.2.1) (i) The intial complex of the rate-determining step of
! the reaction is most probably transferred into the
SR = Z VRsR. (5.2.R) reactant rather_than into the final complex, anc_zl the
p final complex into the resultant rather than into
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the reactant or in other word that an initial com-
plex of the rate-determining step originates prac-
tically all in the reactant and the final complex
practically certainly pass into the resultant, and
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face ands at the corresponding particular state the
critical complexs*.

The transmission coefficiertin Eq. (5.4)is defined
as follows: we consider the representative points of the

hence that one act of the rate-determining step is part of canonical ensemble, referred tdSaction 5.2

necessary and sufficient for the reaction complex
of the rate-determining step to complete the reac-
tion, i.e. to pass from the state of the reactant to
that of the resultant.

(i) The excess of the rate of any elementary reac-
tion in one direction over that in the reversed
direction must be equal to or smaftéthan that
of the rate-determining step for the reaction to
proceed steadily or without accumulation of the
intermediate product. But since the rate in either
direction of the rate-determining step itself is
negligible compared with either of any other ele-
mentary reaction, the same must be true with the
excess. It follows that for any other elementary

reaction than the rate-determining one the excess

is negligibly small compared with its rate in ei-
ther direction, or in other word both the rates are
practically balanced.

5.3. The rate of the elementary reaction

The rate of elementary reaction which proceeds adi-
abatically inside an assembly at thermal equilibrium
is derived as followg8,9]:

kT QCy
K h QCSI .

V=

(5.4)

TheQC{ or QCéI is the classical approximation of

the Zs of the assemblg] or Cg' ,i.e. of the assembly
Co of definite chemical composition augmented by the
critical complexs* or by the initial complex'.

€y is defined asC{ at a particular configuration

corresponding to the minimum @CJ, whereC} is an
assembly consisting afy of definite chemical com-
position and the reaction compléxwithin the latter
with its representative point in the configuration space

appropriate to the chemical composition of the assem-
bly C?. Because of the microscopic reversibility, how-
ever, the flow of the representative points through the
critical surface is blanced by the reversed one. The
transmission coefficient is now the ratio of the num-
ber of representative points which complete the ele-
mentary reaction over that which transit the critical
surface in either direction. It follows from the defini-
tion of ch* and « the latters are the same for the

reverse elementary reaction. The rateof the reverse
elementary reactiion is hence given by

. kraocy
V =K— .
h QCgF

The derivation of the above expression has nothing
to do with some equilibrium relation between the ini-
tial and the critical complex and is generally applica-
ble to the assembly at thermal equilibrium not being
restricted to the case of the reaction complex behaving
dynamically independent. Nor it presupposes the ex-
sistance of the saddle point of the potential energy and
its being determinant of the rate. As shown later the
expression thus derived includes that of Eyriig]
or of Evans and Polanyil1] as its special case.

(5.5)

5.4. Classification of reaction and different
expressions for the rate

Egs. (5.4) and (5.5)or the rate of the elementary
reaction may readily expressed accordindetp (2.2)
in terms ofl’s, i.e.

resting on a hypersurface separating the region cor- where

responding to the state @t of § from thats". The
hypersurface thus determined is called the critical sur-

13 The excess may be smaller than that of the rate-determining
step when the course is branched.

KT p*
B = 71’—5,, (5.6a)
p
- KT p*
5 =K7”—8F (5.6b)
p
| i | |
P’ =T]w"H". (5.7.1)
SF ! SF WF
p =Tle™n" (5.7.F)
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according t&egs. (2.11), (5.3.1) and (5.3.F)he func-
tion p®* in Egs. (5.6a) and (5.6khay either be ex-
pressed according t6q. (3.1)in the form,

5* Os+(0) g

= O qo+ (5.8)
or according tdegs. (3.3) and (3.5 the form,
P = 1%—2*, (5.9)
where
0¥ = - (5.10)
lo*|—>0|0*|

ando* denotes a small cavity of molecular dimension
housing the centre of gravity éf within. Substituting
p%" from Eq. (5.8)or from Eq. (5.9)into Eq. (5.6a)
and (5.6b)we have

. kT 0%
v :K—Q—l, (5.11a)
h N’S*p‘s
kT 0%
vV = K?N(S*—ps':’ (511b)
or
kT 5% 81
5= J O © Gor. (5.12a)
h Og+s+) p?
ST
_ K190 4o (5.12b)

= 7 @0,*(5*) pSF .

We call along withSection 3.1@n elementary reac-
tion homogeneous, i#°" and henceV?®" remain con-

stant all over the space concerned, or heterogeneous

if 0% and henceVv?®" are concentrated at site* of
the similar description as that ef' in Section 4.3A

J. Horiuti/Journal of Molecular Catalysis A: Chemical 199 (2003) 199-234

kT 0%

= K 6':’

v
V] = — — 5.13b
V1= " ( )

wherevq, and v, are respective rates per unit volume.

Eqg. (5.12)is on the other hand transformed for the
heterogeneous elementary reaction occurring in iden-
tical siteso*’s of total numberG. QC{’, p*" and
Os+o+) involved in the expression are, now in accor-
dance withSection 5.3 those of the assembly con-
taining ones* in either one ofs*. It follows that
G@g*(g*)zj. or @J*(g*) = 1/G, i.e. thatEq. (512)
assumes the form,

_ ¥ kT g%

V] = X = K;Gl 5] @o-*(()), (514a)
.V KT _ ¢,

vy = i K;G]_ o Os*(0), (5.14b)

whereA is the area of the surface agq is the number

of o*’s per unit area. The total rate may be obtained
by simply summing up;, or v, of Eq. (5.14a)or
Eq. (5.14b)with respect to all kinds of sites.

6. Application-I11. The characteristic number on
the reaction

6.1. The order of reaction

The orderm of a reaction has hitherto been taken
the characteristic number of the reaction and the most
important information about the mechanism.

" Let the homogeneous fluid of our assembly contain
memberssl'- 's of the reactant, respectively, at concen-

. L,
reaction will be called homogeneous or heterogeneoustrations N ’s but none of the resultant, the former

according as its rate-determining step either.

Eq. (5.11)may conveniently be transformed as fol-
lows for the homogeneous elementary reactivf.
being the concentration of only o4& exsisting in the
assembly* it may be identified with the reciprocal of
volume V of the homogeneous fluid whes& is in.
We obtain thus frontqg. (5.11)

kT 0%
= K —_—

v
V=T (5.13a)

V] =

14 ¢f. Section 5.3

passing over into the reactant at a rager unit vol-
ume of the fluid. The numben is expressed as

ey

~ 3log N

9 logro (6.1)

The individual term dlogro/d IogN‘StL on the
right-hand side oEq. (6.1)gives what is called the
order of reactionn}- with respect tos}, i.e.

m -

_ . (6.2)
YT log N°
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We consider on the basis of rate expressions ad- mechanism may well be that of the simple reaction
vanced inSection 5.4 how the order of reaction but not necessarily.
indicates the mechanism, first with the homogeneous In the case when the simple reaction is hetero-

simple reactiort? assuming throughout that re- geneous the same is true withh and m}- since rp
mains constant with progress of the reaction. or v1, is, as in the previous case, proportional to
We have in this case according to the definition,  [T/(¥% /0% )" in the homogeneous fluid according
Fo= 31 to Egs. (3.5), (5.144), (6.3), (6.4.L) and (6.5.pyo-
’ vided thatQ? s andg®. ©,+(o, in Eq. (5.14ayemain
st=46, sR=sF (6.3) constant.
and Passing now to the homogeneous reaction con-
L \ sisting of several elementary reactions, where every
P =p, (6.4.L) component of variable concentration behaves ideal,
R F we first observe thafp is proportional tov;, of the
8 — 8 (6.4.R) - . : : : :
P =pr s rate-determining step, if not identical with, as in the

where; is the rate of the elementary reaction reck- Ccase of simple reaction, tha, in turn depends solely
oned per unit volume of the homogeneous fluid. Ex- on p’ of the step because of the ideality according to

pressingp® and p®" according toEgs. (2.11) and  Eq. (5.13a) that p* in turn is combined soley with

(5.2)in the forms, p's18 because of the equilibrium relatidgy. (3.6)
I prevailing, according toSection 5.2 (ii), with all
— H(p‘sll_)vll_’ (6.5.)  other elementary reactions than the rate-determining

step, and thap® in turn depends only upom®
according toEq. (3.5) The orderm,L may hence be

_ SRR . ,
- l_[(p ' (6.5.R) expressed according q. (6.2)in the form,
we have byEgs. (3.5), (5.13a), (6.3), (6.4.L) and 310970 310g70 8Iogp5' 8logp51L
(6.5.L) mb — — .
. alogN®  dlogp® jlog p* log N
. kT ok sl
ro == 0 (QSL)V H(N ) (6.6) Both the first and third differential coefficients of the

third member of the equation being -1 according to
i.e. thatrg is proportional tof ' (N )" provided that ~ Eds. (3.5) and (5.13ajve have

components of variable concentration behave ideal so s

thatQ®’s remain constant in the course of the reaction. m- = 9log p

The order is now given according fxgs. (6.1), (6.2) dlog po*

and (6.6)as which depends on the mechanism of the reaction.

m= Z u,L (6.7) In the case of the homogeneopara—ortho-con-
I version of hydrogen, if the rate-determining step is

and elementary reaction,

my =y (6.8)  H+p-H2o— o-H2+H,

The order of reactiom| with respect toS} hence  we have betwees" = p-H, ands' = H + p-Hj the
equals the number of the molecuﬁl}e reacting andn equilibrium relation,
the total number of such molecules. Conversely, if ob-
served value, o;fnlL respectively, equals the stoichio-
metrical coefﬁcientvl'- of the chemical equation, the

(pPH2)32 = pHprHe

_ 16 The form of the functionp® = p® (p%%, p% . ... P’y de-
15 ¢f. Section 5.1 pends on the mechanism.
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and hence

m

NIlw

_ L
=m,

The numbem ormlL, if determined experimentally,
gives thus a criterion for the mechanism.

The same is true with the heterogeneous reaction
provided that component of variable concentration be-
haves ideal ang?’. @, () in Eq. (5.14ayemains suf-
ficiently constant.

The above procedure of providing a criterion for
the mechanisn may be useful in the case of the ho-
mogeneous reaction, when we can often foresee the
ideality on the ground of the small concentration
of variable composition, but less in the case of the
heterogeneous reaction when we can hardly be sure
whetherg?®. ©,+(q) is sufficiently constant before we
learn anything about the mechanisfm.

6.2. The stoichiometric number of the reaction

We first define the rate of the reaction in the forward
direction as the numbérof reactants passing over into
the resultant per unit time. Themay be experimen-
tally determined by distinguishing reactants originally
present from those produced by the backward reaction,
labelling the reactants or resultants, say, by means of
isotopes. Since one act of the rate-determining step in
the forward direction is necessary and sufficient for its
reacting complex to pass from the state of the reactant
into that of resultant® we have

Uo =0, (6.9a)
whereu is the number of forward acts of rate-deter-
mining step required to transfer one reactant com-
pletely to a resultant.

The backward ratev defined similarly bears a re-

lation to v

-«

V.

wo = (6.9b)
Numerical values ofv or v hence depends, al-

though the produgtv or i1 v is fixed, on the absolute

value of the coefficient in the relevant chemical equa-

tion, where only the ratio among them needs to be

17 ¢f. Section 8.1
18 ¢f. Section 5.2 (i).
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fixed. We refer here for the sake of concreteness
and v to the smallest possible intergral coefficients.
We will call the characteristic number of the reaction
u thus fixed the stoichiometric number and proceed to
express it in the form accessible to the experimental
determination.

The observable resultant ratef decrease of reac-
tant is given by

P

Fr=v— 1.

(6.10)

We see, on the other hand, that by passing of one
reactant over into the resultant the Zs of the assem-
bly is multiplied by a factop?®™/p®", inasmuch as the
intermediate product of the steady reaction changes
meanwhile hardly in concentratid. The multiplica-
tion being, however, overall result of elementary re-
action involved, it equals the multiplication due to the

rate-determining step® /p® , raised touth power,

i.e.
SR SF\ ¥
p p
—r = (T) (6.11)
p p

since Zs remains unaffected because of the equi-
librium relation Eq. (3.6) by any other elementary
reaction than the rate-determining step according to
Section 5.2 (ii).

The argumentp‘sF/p on the right-hand side of
Eqg. (6.11)equalsv/ v as it follows immediately from
Egs. (5.6a) and (5.6hi.e.

5!

F
P

- (6.12)

v
v

Eliminating now p* /p%, %, 7 and » from
Egs. (6.9a)—(6.12we have

st Yn
F=p{1- (%) : (6.13)
or differentiating with respect to
SL
x =L, (6.14)
or = 8_1)(1 — xmy — lﬁxl/“_l
dx  0x %

19 ¢f, Section 5.2
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or at equilibrium of the reaction when= 1,

1 1 or

== (_;») (6.15)
122 vK 0x Eq

or according tdegs. (3.25) and (6.14)

1 RT or

- =z <%> ) (6.16)
mo vEq \3(uS — o)/ gq

where the suffix ‘EQ’ signifies the values at equilib-
rium.

The numberu is expressed in a slightly different
form by differentiating’ with respect tcp‘slL . the result
is, according tdgs. (6.5.L), (6.13) and (6.14)

87 _ 33 l— 1/# _ﬂixl/“
5L - (SL( X ) v (SL
ap°i ap°i n p°i

or at equilibrium
L

-

v 1 ar

L= | —— (6.17)
M VEq \dlogp / gq

or by Eq. (3.25)

o _RT(7 ) (6.18)
wo OEq \audl g,

Eq. (6.16)or Eq. (6.18)allows us to determing
experimentally providedgq is observed for instance
by a proper use of isotopes.

6.3. The stoichiometric number of the hydrogen
electrode process

The fitting of an alternative mechanism to the ob-
served value of: is exemplified later with the hydro-
gen electrode process.

If the hydrogen electrode reaction written down in
the form,

Hy = 2H" 4 2e (6.19)
has the mechanism,
Hy, — 2H, HAHT +e (6.20)

i.e. if Hy splits first into adsorbed hydrogen atoms and
then each atom dissociates further into a hydrogen ion
H* and a metal electron e of the electrode and the
latter step is the rate-determining,is 2, since then
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the step should take place twice as frequently as the
total reaction.
If on the other hand, the mechanism is such that,

Ho AHS +e, Hot — 2H  +e (6.21)

or that kb splits first into the hydrogen molecule ion
H,™ and a metal electron determining the rate, and
Hot then further into 2H and e, must be 1.
The experimental determination of in the case
of the hydrogen electrode process on platinum has
been carried out by Horiuti and Ikusinfa2]. The
resultant currenbgq in Eq. (6.16)was measured by
the electrode current, whilégq by the rate of the
exchange reaction between the hydrogen gas and the
solution around the electrod®3,14]and p*" / p®" by
the relatior?®
P>
—RTlog — = 2Fn, (6.22)
pé
whereF signifies Faraday anglthe overvoltage of the
electrodé’! We obtain fromEgs. (6.14), (6.15) and
(6.22)noting thatp‘SL = p‘SR at equilibrium and hence
n = 0, an expression;

(5).

wherei,—o andi are currents corresponding, respec-
tively, to ratesvz,; andr.

i
an

1 RT

= —— 6.23
18 2Fi,—o ( )

20 Eq. (6.22)is derived as follows. For the reversible hydrogen
electrode we have the equilibrium relation accordindg=tp (3.6)
ie.

.
pHz = G292,

where p§ is the p? of the metal electron there. But since the
reversible work of transferring-F electricity from the reversible
electrode into the electrode in question-ig'n by definition, we
have
e
%8 =—Fy,

—RTlog

where p€ is that of the metal electron in the electrode. But since
according toEq. (6.19) p = pM2 and p** = (p"")2(p®)2, we
have p®" /p*" = (p¢/p®)? and henceEq. (6.22)

21 The overvoltage is defined as the electrode potential referred
to any reversible hydrogen electrode in the same solution of the
same hydrogen concentration as that in the direct neighbourhood
of the electrode in question.
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Horiuti and lkusima[12] thus found thatu = 1
for the hydrogen electrode process on platinum. The
mechanism ofEq. (6.21)among the two alternatives
advanced thus only fits the observed valug.of

7. Application-1V. Homogeneous reaction

7.1. The rate of the homogeneous elementary
reaction

We definek* of the homogeneous elementary reac-
tion in accordance witlkgs. (3.5), (5.7.1) and (5.13a)
as

v kT Q¥

= i R T As
[T (N°)Yi [T Q%)

where suffixx signifies ", v} or the total number
of molecules of the initial complex. The® is the
“rate constant” as called usually but not necessarily a
constant inasumuch ag@®'s in Eq. (7.1)may vary if
§’s are not ideal.

Denoting the quantities at infinite dilution of vari-
able components by suffix 0, we have

K (7.1)

i polyw)
v Kioké%’ (7.2)
where
5*
ké = Kog%, (73)
[T
)
fo= %. (7.4)

The 7% may be identified with activity coefficient
inasmuch as it becomes unity at the infinite dilution
and bears the relation o’ according toEgs. (3.81),
(3.82) and (7.4)

1’ = uj o+ RTlog f°N?, (7.5)
where
1y o = —RTlog 0. (7.6)

The relation of the form oEq. (7.5)was advanced
by Bronsted15,16]and Wynne-Jones and Eyrifity7]
by analogy to thermodynamics regarding the activated
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complex as thermodynamical chemical species with-
out defining f® on the statistical mechanical basis.

Inthe case of a gdg is independent of the pressure,
0J's being equal to that in vacuunQ§ is hence
calculable with reference to a single reaction complex
in vacuum.

7.2. The rate constant due to Eyring, Evans and
Polanyi

Eq. (7.1)or Eq. (7.3)is identical in the form with
those obtained by Eyrind 8], Evans and Polanyi 1]
but not quite in its implication. The latter authors de-
rive the identical form ofEq. (7.3) by defining the
activated complexX{(g) arbitrarily with reference to
the saddle point on the potential energy surface of an
isolateds and by assuming the chemical equilibrium
between the initial and the activated complex or by
expressing the concentratioW’e® of the latter ac-
cording to the equilibrium relatio&q. (4.9)as

QBE(g)

= (Nf‘,!)“,!_
[T [

Multiplying the latter by the “universal frequency”
kT/ h, the frequency of transition through the saddle
point in the forward direction fobZ(g) and by the
chancec “that having once crossed the barrier, the ac-
tivated complex does not return19] they arrive at
the rate expression and hence at the identical form of
Eqg. (7.1) Extending now the latter form by analogy,
they go back to that oEq. (7.2)for the elementary
reaction in liquid,Q®" there being, according to them,
that of quasi-gas molecule moving in the mean poten-
tial field of the environment.

It is implied in the theory of Eyring20], Evans and
Polanyi[11] that the saddle point is at least approxi-
mately narrowest pass on the path from the initial to
the final state. This may be practically true in many
cases but associated with difficulty in some cases.

Eyring assumes, for example, in accounting for the
negative temperature coefficient of the elementary re-
action,

NE® = (7.7)

2NO+ Oz — 2NO;

that the activated complex consisting of the three
molecules 2NO and £has the same minimum poten-
tial energy as the initial complex, which corresponds
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to the lowest possible saddle poif@0]. As pointed Eyring [18], Evans and Polanyfil1] because of the
out by Rice[21] however the temperature coefficient equilibrium relation with the conception of the lat-
cannot be zero or negative if such saddle point is ter case or that of the diffusion-type as called by
even approximately narrowest to pass through. This the present authdi8,9] whereas Eyring, Evans and
difficulty is of course not associated with the present Polanyi[24] defend with the conception of the former
method where the critical complex is originally de- case or that of the effusion type. They both are justi-
fined with referrence to the narrowest configuration fied so far as the respective extreme case is concerned.
itself. Rabinowitch [25], Christiansen[26,27] and Nor-

Another difficulty with their method is due to the rish[28] follow a different line of developing the the-
assumption of the equilibrium relation between the ory of the elementary reaction from that of Eyring
initial and the activated complex. We consider first the [18], Evans and Polanyfil1] with special reference
state of equilibrium between the initial and the final to the diffusion type. The procedure of the former
complex and then that of the irreversible state brought group of authors seems, however, to be looked upon
about from the former by removing the final complex. by Eyring as an alternative manner of describing the
If the transmission coefficient is unity or the reacting unique reality?® rather than as dealing, as actually they
complex which transits the state of the activated com- are, with the other extremity of the reality.
plex forward, originate all in the initial complex, the Experimental meterials hitherto found unfortu-
rate of the transition remains of course unaffected by nately fit the picture of the effusion type, or equally
removing of the final complex. The equilibrium rela- well the both. It is desirable to find examples which,
tion is then applicable in this sense which is assumed fitting exclusively that of the diffusion type, lead us
by Wynne-Jones and Eyrirf{d 7] for general validity. inevitably to the correct synthesis of these antithesis.

The assumption is not, however, legitimate even in
this sense when the transmission coefficient is appre-7.3. The thermodynamical form of the
ciably less than unity, or, when only a small fraction homogeneous rate
of the reaction complexes once traversed the activated
state completes the elementary reacﬁ%p‘kdmitting In this section, the rate and the rate constant will be
with Eyring, Evans and Polanyi that the activated state expressed in thermodynamical terminology: it is how-
is the narrowest pass throughout the course from the ever neither claimed nor needs to be claimed thereby
initial to the final state, we may conclude that at equi- that the critical complex behaves like a thermodynam-
librium the activated complex transiting in either di- ical chemical species or that recognized directly by
rection will equally likely reach the initial as well ~thermodynamical (stoichiometrical) procedure; every
as the final state, and any one there is equally likely quantity and relation here dealt with are purely of the
having come from the either state. By removing now statistical mechanical formulation being clad in ther-
the final complex in this case, the activated complex, modynamical terms.
which originating in the final complex transits the ac-  Eq. (5.6a)for the rate of the elementary reac-
tivated state forward, falls off, the total number of acti- tion is expressed by substituting’s formally from
vated complexes transiting forward being thus almost Eq. (3.25)with due regard tdgs. (3.724), (3.73p)
halved. The equilibrium relation is thus inapplicable and (5.7.1)as follows:
here even in the above sense.

This latter difficulty is, however, only formal, since
the final rate expressioiq. (7.1) or Eq. (7.3) of
the identical form is derived according to the present . .
method without resorting to the equilibrium relation.  A|*Fy = F) — Z v} PP

It seems to the present author that Fowgg], i
Guggenheim and Weid23] criticises the method of = A[*Zp = Z’f: _ szl 78 (7.9)

1

= e AI'Zr/RT (7.8)

(4

K';l_Te—A\*FV/RT

where

22 \We consider here only elementary reactions which proceed
adiabatically, cf.Section 5.3 23 ¢f. Eyring’s comment on the work of Christiansg2v].
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Denoting the critical increment of any extensive Interrelations among critical increments are readily
property by prefixa |* and the associated condition of derived from the relations among partial molar quan-
constant volume or of constant pressure, respectively, tities developed irBection 3.9 and 3.18s follows:

by suffix V or P as above we have froigs. (3.72u), K Atk Ak "
(3.73u) and (3.74y) Al"Fy = Al"Zp = Al"Fp + PA|"Vp, (7.16.F)

o
Al*Sp = AI*Sy + = A|*Vp, 7.16.S
Al*Fy =Al*Zp = A*Uy — TA|*Sy S v B Ve ( )
=A|"Xp — TA|*Sp (7.10)
o
Al*Xp =AUy + T=A|*V,
and henceEqg. (7.8)in the form, "Xe "ty B Ve
= A*Up + PA[*Vp, (7.16.X)
- Kk_TeA|*SV/Re—A\*Uv/RT DA Fy
( ! > N (7.16.FS)
= KT eArse /R oI xp RT (7.11) Y
h %
IA[*Zp .
. . =—A|"Sp, 7.16.ZS
Eq. (7.1)for k* is expressed according Exgs. (3.82) ( oT )P "Se ( )
and (3.9 in the form,
(3.93) IA*Fy IA[*Zp i}
K = ol @Al Fy1/RT _ K_efA|*ZP.l/RT7 (7.12) P T P T
h h
A|*FV’1 = A|*Zp’1 = A|*FP’1 + PA|*VP, (717F)
where o
o g Al*Sp1=Al"Sya1+ EA|*VP, (7.17.5)
Al*Fyi=Fj, - Z v; Fyi=AZpa
i
- v | 59! 5+ |l A Xp1=Al*Uy 14+ TEAFVp
=ZP,1—Z"1'ZP',1=M1 _Zviﬂf' ’ ’ B
i i = Al"Up1+ PA[*Vp, 7.17.X
(7.13) ( )
dA|*Fy 1 "
Defining increment\ [*Uy 1, A|*Xp.1, Al*Sy.1 and ( 3T y = —AlSv.a, (7.17FS)
Al*Sp,1 of the “standard state” similarly a&|*Fy 1
or AI*Zp.1, k¥ is further expressed according to (9AI*Zp1 — _A[*Sp 1+ v'RTx (7.17.2S)
Eqg. (3.97)in the form, T P ’ ’ o
k* :Kk—Te—@l*Uv,l—TA\*Sv,l)/RT <8A|*FV 1) (8A|*Zp 1)
9P —\ oar
KT * # T T
= i (ATXramTAlSr/RT, (7.14) — A"Vp — v*RTB, (7.17.FV)
Al*X OA|*V,
where gAIXP1N Ny, g (280VEY (7.18)
P )y T ),
Al*Fy1=Al"Uy1—TA[*Sy1=Al"Zp1
=A|"Xp1—TA|*Sp1. (7.15) A*Fy1=A|"Fy —RTlogN" = A[*Zp 1
— * _ Taa N
Critical increaments ankl' are constant at constant =A["Zp —RTIog N, (7.19.F)

temperature and pressure provided that componentsa *g,, | — AJ*Sy + RlogN ", (7.19.8)
of variable concentration are ideal ard «, and ‘
remain, respectively, constant. Al*Sp1=Al*"Sp + R IogN*, (7.19.9)
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Al*Uy1 = Al"Uy, (7.19.U)
A|*Xp,1 = A|*Xp, (7.19.X)
where
logN’ = logN?" — > " logv} log N& (7.20.N)
i
and
vi=1-) . (7.200)
i
In the special case of a gas when
RT
Al*Vp = v*?’ (7.21.V)
1
o= (7.21w)
and
p== (7.218)
- P’ .

Egs. (7.16), (7.17) and (7.18ssume, respectively, the
forms,

Al*Fy = AI*Zp = A|*Fp + v*RT, (7.22.F)

Al*Sp = A|*Sy + V™R, (7.22.S)

Al*Xp = AI*Uy +v*RT= A|*Up + v*RT,

(7.22.X)
AUy = A[*Up = AU, (7.22.U)
IAI*F
PEVY Apsy. (7.22.FS)
oT ),
IAI*Z
Zr) _ _Aps,, (7.22.25)
oT ),
IAI*F IAI*Z RT
PR (2A0Zey R g 00 k)
0P ), op ), " P
Al*Fy1=Al"Zp1= A|*"Fp1+Vv'RT,  (7.23.F)
A|*SV,1 = A|*ZP,1 + Vv*R, (7.23.S)

A*Xp1= Al*Uy1+v*RT= A[*Up 1 + v'RT,
(7.23.X)

Al*Uy1 = Al"Up.a, (7.23.U)
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(%) —AFSya, (7.23.FS)

(8A| Zp, 1) —A[*Sp1+ V'R, (7.23.VS)
P

(am Fy, 1) <3A| Z”) =0, (7.23.FV)
T T

(3A| Xp, 1) (7.23.XV)

whereasEq. (7.19)remains intact.

7.4. The temperature variation of the rate and the
rate constant

Our treatment for the variation of the rate with tem-
perature will be restricted to the elementary reaction
of the effusion typé&* for which « is constantly unity.
The temperature variation of the raids readily ex-
pressed according t8qg. (7.8)in the form,

9logs IA[*Z
RT2 9%\ _RT4apze -7 (22 P)
T Jp P

oT
(7.24.P)
and
log A[*F
R (199Y) _pryapr, -7 (24 V)
oT )y oT )y
(7.24.V)

and hence according tgs. (7.10) and (7.16)

dlogv
R (22%) —RT+ AP X,
or ),

(7.25.P)

dlogv
RT2< gv) — RT+ A[*Uy. (7.25.V)
oT ),

The temperature variation of the rate constant of
the elementary reaction is expressed in the form of
the Arrhenius activation energy by differentiation of

Eq. (7.12) i.e.

RTZ<8Iogk )
AT ),

=RT+A[*Zp1—T (

0AI*Zpa

= )P, (7.26.P)

24 SeeSection 7.2cf. [8,9].
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RT2 (3 logk* ) sion type. We have readily accordingHgs. (7.8) and
3T )y (7.16.FV)
OA*F v *
=RT+A["Fy1—T ( | Vyl) ., (1.26V) dlogvy _ AlVe (7.29)
T )y 3P ), RT
and according t&qgs. (7.15) and (7.17) Similar expression fork* is obtained from
Egs. (7.12) and (7.17.F\8s
dlogk*
RE (2295 ) _RT4+ A*Xp — v*RT, . B
T ), dlogk _ AI"Vp N
=— + Bv*. (7.30)
(7.27.P) P ) RT
dlogk* Differentiating Eq. (7.27.P)with respect toP with
2 _ *
RT (8—T)V =RT+A"Uy. (7.27.V) regard toEq. (7.18) or Eq. (7.30)with respect tar,

_ we have
The difference between the above two forms of

the temperature variation is expressed according to 9°10gk* _APFVe 1 (0AI"VP (2
Eq. (7.16.X)as oToP ~ RE RT\ o /), oT ),

dlogk* d logk* or
R (L2295 ) _ppp (29 .

oT ), T ), dEp . dlog Al*Vp
. CEP) _Apvp o7 (22T
=T 5V - V*RTa. (7.28) 0P Jr or P
0

. _V*RT2 (-“) : (7.31)

Assuming thatT = 300K, A|*Vp = 100ml,a = aP )

103 per degrees = 10~*atm ! andv* = —1 which
corresponds to the ordinary case of the bimolecular
elementary reaction in liquid, we find 7kcal for the . _ 2 <3 |09k">
difference which is by no means negligible. aT Jp
The expression for the difference is derived by
Evans and Polany[11] raising the importance of
the “Arrhenius activation energy at constant volume” / d« 3%logV aB
RT2(3 logk*/aT)y for elucidation of the reaction (a_p)T = 9PoT (3_T>p'
mechanism in liquid who, however, leave out the )
second term*RT2« in the above equation. Evans and Polanyi29] and Guggenheim(30]
The latter term, although minor in the above exam- derived, respectively, the similar expression for
ple of the liquid assembly, becomes so large in gas (0Er/dP)r, the former authors, however, leaving out
that it just cancels the first according Ex. (7.21) the termv*RT%(de/d P)r, whereas the latter includ-
Both the “activation energies” are now identical with "9 @ term valid in the special case of the bimolecular
each other being given as association whem* = —1.

where

and

RT? (a Iogkx) —RP (3 |°9kx> —RT+A[*y,  7-6. Comment on the controversies on the
P v thermodynamical treatment of the rate

where
As detailed in the foregoing section due distinction
Al*U = Al*Up = A"Uy. must be made, for exact thermodynamical treatment
of the rate, between the partial molar quantities and
7.5. Pressure variation of the rate the total quantities on the one hand, and, between the

critical increments at constant pressure and those at
Our treatment of the pressure variation is restricted constant volume on the other hand except in the case
as noted in the foregoing section to the case of effu- of the gas. Such a distinction is of course not merely
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the matter of the thermodynamical treatment of the whereA|*p is, as he states, the critical increment of
rate, but might be directed back to the pure thermo- the (Helmholtz's) free energy. By differentiation of
dynamical treatment of the equilibrium. Eq. (7.34)he arrives akq. (7.32)

Less precaution seems to have hitherto been paid In order to follow his line of reasoning exactly
on this respect, as might naturally be expected from the critical increments involved in the assumption,
the history of the theory of the rate developed in anal- Al|*¢, A|*E, A|*S andA|*V have to be distinguished
ogy to the thermodynamical theory of equilibriumina with respect to their associated conditions. For being
gas. The situation seems, however, to have resulted inthe increment of the Helmholtz's free energy|*¢
unfortunate confusions and controversies, which are must be any one oAA|*Fy 1,A|*Fp1, A|*Fy, and
going to be analysed and commented upon hereafter A|* Fp. It must be however eithex|* Fy 1 or A|*Fp 1
in the light of the present thermodynamical theory of rather thanA|* Fy or A[* Fp since otherwiseky de-
the rate. pends necessarily on the concentrations of the ini-

Moelwyn-Hugheq31] puts forward the following  tial complex. TheA|* Fy 1 is expressed according to
expression for the dependence of the Arrhenius acti- Egs. (7.15) and (7.17.Xgs
vation energyFE 4 on hydrostatical pressur,

A*Fy1= Al*"Up1+ PAI*Vp — TA|*Sp 1,
Eo=A|*E + PA|*V (7.36.V)

1 dlogA*vV dlog P
X =T Y » - T )y whereasA|* Fp 1 according toEq. (7.17.F)as
(7.32) AI*Fp1= Al*Up1— TA[*Sp1. (7.36.P)

where A[*E or A|*V is, as he states, the increase in \\e see that for\|*Vp to persist in the expression of

internal energy or volume associated with the change A+, the latter must be expressed By. (7.36.V)

from ordinary to activated molecules. ~ which fixes the exact meaning oi notations in
Evans and Polany?9] advance another expression, gq. (7.35) Moelwyn-HughesEq. (7.32)appears now

. in the form,
Es = Eg+ PA|*V {1—T <M) } (7.33)
P

or Ea=A["Up1+ PA["Vp
for the relation, wherekg is E4 at P = 0. The latter o N7 (2o9Al Ve . (3logP
expression may be derived along the line of procedure oT P aP ),
of Evans and Polanyi by neglectimjl2v*(da/d P)r (7.37)
identifying E4 to Ep in EqQ. (7.31)and integrating the
latter with respectP, regarding By Egs. (7.15), (7.17), (7.34) and (7.3@)e have
however, either
AI*V{l T(along) } 9 logk}
T ) p RT2( ag 0) = A*Xp —v'RTa  (7.38.P)
P
constant. Evans and Polanfg2] claim Moelwyn- or
Hughes’sEqg. (7.32)contradicts thermodynamics, be- .
cause the latter is inconsistent, as they prove, with their RT2 (3 log ko) = AI*Uy. (7.38.V)
Eq. (7.33) F) v

Moelwyn-Hughes starts from the assumption . ) o
Equating the former to the Arrhenius activation en-

o = const x g Al'e/RT (7.34) ergy E4, which is according to Evans and Polanyi
[32] always to be referred to constant pressure, and
and transformingA|*X p by Eq. (7.17.X) we have

Al*¢ = AI*E + PA[*V — TAJ*S, (7.35)  Ep=Ep=A[*"Up1+ PA|"Vp — v*RTPa. (7.39)
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We see that differential coefficientyd log A|*Vp/
dT)p as well asT(dlog P/dT)y in Eq. (7.37)are
here missing, the term*RT2« appearing instead.

Evans and Polanyi, criticizing Moelwyn-Hughes’
procedure of deriving hi€qg. (7.32) state that the
appearance of the third terr(dlogP/aT)y in
the parenthesis is due to a mistake of differentia-
tion and by performing the differentiation correctly
an expression without the terffi(dlog P/oT)y in
coincidence with theirEq. (7.33)is obtained. But
we see above that by carrying out the differentiation
more correctly even the terfi(dlogA|*Vp/0T)p
disappears, which affords a strong feature of re-
semblance ofeq. (7.32) with Eqg. (7.33) The er-
ronous term7(dlogA|*Vp/dT)p creeps into the
final expression, if the differentiation ef(A|*Up 1 —
TAI*Sp1)/RT with respect toT is incorrectly
taken to beA|*Up,1/RT2 by analogy to the dif-
ferentiation of —(U — T9/RT at constant volume,
which gives exactly//RT? according toEgs. (3.21)
and (3.23)or by analogy to the differentiation of
—(AlI*Uy1 — TA|*Sy.1)/RT at constant volume
resulting exactly in —A[*Uy 1/RT according to
Egs. (7.15) and (7.17FS)

It may be seen that the neglection of the distinction
of the partial molar quantity from the total quantity and
of the associated condition of the critical increment is
quite misleading.

Guggenheini30] developed the thermodynamical
theory of the rate correctly, arriving at the identi-
cal forms of Egs. (7.38.P) and (7.3%lthough the

distinction between the constant pressure and the

constant volume is not explicitly noted or rather
all partial molar quantities are referred to constant
pressure.

He starts thereby from the definition of the ideal di-
lute solution with the independent variables of temper-
ature, pressure and mol fraction, giving quite different
formulations for the thermodynamics in gas from
that in liquid, whereas here the ideal solution is de-
fined with the homogeneous fluid in accordance with
Guggenheim’s particular form in liquid, the other in
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ics of the elementary reaction in gas as the special
case.

On commenting on the papers of Moelwyn-Hughes
and of Evans and Polanyi on the basis of his theory,
Guggenheim30] objects Evans and Polanyi's view
that k3 should be differentiated at constant pressure
on the ground that measured values B)f at ordi-
nary pressures as well as at hydrostatical pressure
are all referred to constant pressi@2], stating that
“the correct reason of keeping the pressure constant,
is that temperature, pressure and mol fractions are
the independent variables in the simple formula by
which ideal systems have been defined and therefore
also in all formula derived therefronT30]. We see
no reason why we should to be faithful to this set of
variables throughout: with proper transformations and
with proper specifications of associated conditions, as
shown in foregoing sections, we arrive at even simpler
form of the temperature variation d@fj at constant
volume. We quite agree with Evans and Polanyi's
view of referring measured 4 to constant pressure
and of raising the importance of that at constant vol-
ume derivable therefrom for the theory of reaction in
solution.

8. Application V. Heterogeneous reactions

8.1. Dependence of the rate on concentrations

We see fronkg. (5.14)that the rate of the heteroge-
neous elementary reaction varies proportionab{'o
or, as remarked iBection 6.1to ]'[i(N‘Sz!)”:! of the ini-
tial complex in the ideal homogeneous fluid provided
Os+0) in Eq. (5.14)sufficiently approximates unity
and hence;f,i remains constant owing to the absence
of interaction.

In the other extreme case whén..m, =~ 1 or the
surface is practically covered by adsorbed molecules
sM's, ¢%. may be taken constarét; being surrounded
by definite sort of molecules. The dependence of the
rate onN%!’s as well as onv®» 's of moleculess™ in

gas being automatically derived as its special case. Wehomogeneous fluid, whose set,

note that the term*RT2a, in Egs. (7.17.2S), (7.27.P)
and (7.28)taken into account with its particular value
by Guggenheim, takes care, as showrSection 7.3
and 7.4 with proper precaution on the condition of
partial molar quantities, to include the thermodynam-

M= ")) (8.1)
m

is in equilibrium with adsorbedM, is deduced as
follows.
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Rewriting ©,+ (o) according tdeg. (2.5)in the form,

SM
Orey = 2570 _ CCo0) 9C;- o) QCE"
o* - - BM 5M ’
QCo QC, . m, 2Co QCo
and noting the relationggs. (2.2)—(2.4)
M sM
5M _ QCg an _ QC *(5M) and
QCo " 77 QCo+(0)
oc
Or sy = &
ocy"
we have
aM
O = L6 (8.2)
a*(0) = —sm Fox (M) :
o-*
or substituting®,+, from Eq. (8.2)in Eq. (5.14)
al. p
V1 = K'?Gl%T@U*(ﬁM)' (83)
4e+ P

We see now that i9,«smy = 1, v varies propor-
tional to p®" /p®', i.e
SM

Q*P
v = hGl g M
6] p

(8.4)

It follows that (1) the rate is proportional t(dvf?})",!
in the ideal homogeneous fluid accordingams. (3.5)
and (5.7) and inversely proportional tc(N‘Sr“»f)"rh»fI
there.

If in latter case (1) it happens tha}'s ands)!'s are
individually identical to each other or that the initial
complexs' itself exclusively occupies™*, the rate is
independent of the concentratiovfi’s or of Non’s
If on the other hand (III)S}’S are partially identical to
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8.2. The temperature variation of the rate
The temperature variation af, of the heteroge-

neous elementary reaction of the effusion &fpis
expressed according tq. (5.14a)as

9 log vy - 0 =
RT? o = RT+ A[*Eq+ + Al o E. (8.5)
where
Al*Egs = A|Z*(8*)E —AIJE, (8.6)
_ 9109 Oy+
0 _ o*(0)
Al E = RT?a—T, (8.79)
i} dlogq?.
A|Z*(8*)E = RTZTO (87q)
and
dlo
AL E =RPIIE T (8.7.p)

oT

A|§*(0)E, A|a*(5*)E and A} E are according to
Eqg. (3.13)increments due to the process, respectively,
associated with9s+ (o), qgi and p5', of the average
energy E or of the internal energy of the whole as-
sembly, whose external parameters are fixed £, «
is hence according tBq. (8.6)the increment caused
by bringings' from somewhere in the assembly into
preliminarily evacuated* to form §* there, theA|'s
are thus increments of internal energy or of enthalpy
according as the assembly of interestdis or Ap,
respectively’®

The alternative expression of the temperature vari-
ation is obtained by differentiatingq. (8.3)as

dlogv - _
RT agvl =RT+ A[*Eq+ + AME,-

M . . .. +A|9*(3M) (88)
8,'s the conclusions (1) holds true with the remaining
part of §’s andsM’s. where

The above reasoning about the effectpzj‘f'I or AME,. = A| E— A|’1* M £ (8.9)

]'[’"(N‘SM)”%I on the rate affords the theory of the ¢ )
catalytic poison. Rather curious conclusion that the Aff 5 -|-2a log Oy« sm) (8.108)
rate is inversely proportional tp[” (N )" of sM, oM oT '
even when the latter nearly covers the catalyst, is cor- . 3 log paM
rectly arrived at by Laidler et a[33], who extended A|§’ME = RTZT (8.10.p)

their theory treating the heterogeneous elementary
reaction like a homogeneous one between sites and 25 ot section 7.2
molecules. 26 ¢f. Section 3.9
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and
_ dlogq’.
q _ o
Al o E = RT? o7 (8.10.9)

The latter three quantities are, accordindztp (3.13)
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or by Eqg. (8.12)

rpdlogd—6) odlogs _
aT aT

Eq. (8.14) shows, since —RT2(dlog#/dT) and

AME,-.

(8.14)

. : : 2 : -
increments due to the operation associated, respec-RT(010g(1—6)/9T) are necessarily of equal sign,

tively, with @, su), p™" andg?®? of the average en-
ergy E or the internal energy of the whole assembly
whose external parameters are fixad¥ £« is simi-

larly as in the previous case such increment caused by

bringingsM from somewhere in the assembly into.

These increments are those of the internal energy or
of the enthalpy of the interested assembly according

as the latter isAy or Ap.27
If practically all of sM’s are situated in the homoge-
neous part of the assembly|M E,, - is identified with

the heat of adsorption at constant volume or pressure,
respectively, according as the assembly of interest is

eitherAy or Ap.

In the extreme case Wheédy ) = 1 0r Oy« (smy =
1, AlfuoE or A|§*(8M)E, respectively, vanishes
according toEq. (8.76) or Eqg. (8.100) and hence
Eq. (8.5)or Eq. (8.8)for RT23logv1/dT assumes,
respectively, the form,

dlogv _
RTZ% — RT+ Al*Eys (8.11.1)
or

dlogv _ -
RT 8?”1 — RT+ A[*Egs + AME,«.  (8.11.11)

As to the relative magnitude &129 log1/07 at the
both extremities and to the temperature region of their
appearance, the following may be inferred assuming
the relation ofEq. (4.12%8

Equating alternative forms ofRT23logv/dT,
Egs. (8.5) and (8.8)with due regard tdegs. (8.76),
(8.9) and (8.1®), we have

3109 &+ 3109, - ]
R1209%0  ppf09% ) _ g .
oT oT

(8.13)

27 ¢f. Section 3.9

28 This holds true when the states(0) ando*(sM) are practi-
cally only possible alternative states ®f, ©,+«(5*) being thereby
negligible (cf.Section 4.3.

thaté increases or decreases with increasing temper-
ature according af\|ME,+ is negative or positive,
respectively. Provided that the latter is at least ap-
proximately constant, the extreme cages- 0 and
6 = 1 should hence, respectively, appear at lower and
higher extremities of temperature or reverse accord-

ing asA|ME,« is negative or positive, as shown by
the scheme,

AME,. |60 01

neg. Temp, lower  Temp, higher

pos. Temp, higher Temp, lower

On the other handsq. (8.11)show thatRT2(d log 71/
0T) = Ey is greater at¥ = 0 than at6 = 1 or
reversed according as|M E,+ is negative or positive
as shown by the scheme,

AME,- [ 650 -1
neg. Ey greater Ey smaller
pos. Fy smaller FEy greater

We see readily, overlapping above two schemes, that
Ey is always greater at the lower extremity of tem-
perature than at the higher.

logv, may hence vary linearly with /RT, re-
spectively, at the extremities, the inclination grad-
ually decreasing over the transient region by the
amount/A|M E,«| with increasing temperature. In the
case whenA[*Ey+ and A|ME,+ differ in sign and
|AI*Eq+| < |AIME,+|, the rate will have a maximum
or an optimum temperature in the transient region. If
we exclude the possibility tha, - ;u) = 1 at higher

extremity of temperaturé® only possible case is that

29 pProvided thasM forms a single molecule in the homogeneous
fluid, we have according t&gs. (4.15) and (8.14)

AME « = Nag,.

Eq. (4.15)shows on the other hand thatncreases with increasing
temperature, whem |[M E,« or ¢, is negative, bup may approx-
imate unity only When|o|N‘SM > 1 or M in the homogeneous
fluid is far more concentrated than at saturation on the boundary,
a situation which can hardly be realized.



J. Horiuti/Journal of Molecular Catalysis A: Chemical 199 (2003) 199-234 231

AME,« > 0 and®,-my, = 0 or 1, respectively, at  since the “energy of desorption” of the “retarding
higher or lower extremity of temperature. gas” exactly corresponds WM E, « of §M.

The two extreme cases correspondindgetp (8.11) We see, however, no advantage to force the rate
are recongnized by Hinshelwo@84] who treats the  constant method of the homogeneous elementary re-
heterogeneous elementary reaction in extension of action into the heterogeneous reaction, where the “rate
the theory of homogeneous one, in terms of “the rate constant” is in general by no means a constant, and
constantk’” and of “the apparent heat of activation to detail the picture so that the initial complex pre-
RT2(3dlogk’/aT) of the heterogeneous reaction.” liminarily assumes the state what is called adsorbed
Hinshelwood arrives by several assumptions and ap- at o* before making the critical complex there. We
proximations at the relation for the cage= 0 that should rather, specialize the use of the rate constant
the “apparent heat of activatio®RT2(d logk’/dT)" and its temperature variation duly to the homoge-
equals “the true heat of activation” minus “the en- neous elementary reaction and deal directly with
ergy of desorption.” The “true heat of activation” is and RT2(d logv1/dT) without introducing the inter-
according to him the heat required to bring up an mediate state, which may even be fictitious.
adsorbed reaction complex to the critical complex
and the “energy of desorption” the heat required to 8.3. The rate expression allowed for the mutual
set the adsorbed reaction complex free. His apparentinteraction among adsorbed molecules
heat of activation equals, howevi2(d log1/d7T),
provided that the “rate constant” is determined at e will now formulate the rate of the heterogeneous
constantv?!’s throughout a range of temperature as elementary reaction allowing for the mutual interac-
is usually done, since he defines the “rate constant” astion among adsorbed molecules with an example of
the ratio of the rate tQ‘[i(NB,!)V} in a homogeneous  the catalytic atomization of hydrogen on the surface
fluid. Hence,RT2(dlogk’/dT) or RT2(dlogv1/07T) of a metallic catalyst.
at® = 0 which equals except the minor terRirS° Our assembly will consist of a metallic catalyst in
the increment ofE or of U caused by bringing the  the hydrogen atmosphere, where the catalysed disso-
initial complex to the critical state in* according to  ciation of hydrogen molecules is going on, each of
Eq. (8.11.1%%, may simply be divided, if one prefers them changing into a pair of adsorbed hydrogen atoms.
as did by Hinshelwood, in two parts, i.e. that due to Metal atoms of our catalyst are allayed asSection
the process of bringing the initial complex simply 4.6 on a plane square pattern, each affording one of
into o* or negative “energy of desorption” and that identical siteso’s for an adsorbed hydrogen atom
of raising the initial complex there to the critical Whereas each adjacent pair provingfor the critical
complex provided that initial complexes are situated complex H, which consists of two hydrogen atoms.

practically exclusively in the homogeneous fluid. Expressingp‘sl of the initial complexs' according
For the case when®,.,, = 1 Hinshel- to Eq. (3.5)in the form,

wood similarly arrives at an expression equating Ho

RT?(3logk’/dT) to the sum of the “apparent heat pﬁ' = Q (8.15)

of activation” and the “energy of desorption” of “re- N2

tarding gas.” This conforms again withq. (8.11.11) andp5F of 8F, which consist of two hydrogen atoms,

- according toEg. (2.11)in the form,

30 Since the statistical average of kinetic energy of the mode F

of motion normal to the critical surface amounts justRd if p8 = (pH)Z, (8.16)
reckoned per mol of the critical comple@5], the right-hand

side of Eq. (8.11.1)gives the increment of reckoned per mol we have according t&q. (5.14)

of reacting complex caused by bringing the initial over into the u

critical complex transiting the critical surface. - kTG HEQ N™2 8.17
31t g 0 oro* is not preliminarily evacuated with certainty, the ' = X 771490+ "*(O)W’ (8.179)
latter process must be associated with the more or less additional
increment for clearing up* which amounts as much asagM E,, «

- kT H% Hy—2
in the extreme case dq. (8.11.1)when6 = 1. V1= KFqua*z@U*(O) (p). (8.17D)
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These expressions for the rate will be developed into
the form accessible to the numerical calculation tak-
ing the mutual interaction among adsorbed molecules
into account, but neglecting that between latters and
molecules in the homogeneous fluid and assuming that
any siteo is either occupied by H or else vacant, i.e.

0 =OsH) =1— 64 ). (8.18)

For the first approximation it is assumed that the
additional reversible wofé required to bring up a
hydrogen atom or the critical complex to a site due to
surrounding adsorbed hydrogen atoms is proportional
to their degree of adsorptiah i.e.

—RTlogg!! = —RTlogg!y + 6w (8.19.H)
and
—RTlogq,? = —RTlogg 2 + 6", (8.19.H2)

where— RTIogq ‘o or —RTIogq 0 is the reversible
work reckoned per mol requwed in the absence of in-
teraction, to bring up a hydrogen atom or a reaction
complex from its standard state intoforming an ad-
sorbed hydrogen atom or a critical complex, respec-
tively, there fw or 6w* being the additional reversible
work due to the interaction taken proportionalbto

Assuming further
1-10) (8.20)

we have fromEgs. (8.17a), (8.19.H2) and (8.20)

*

@O'*(O) =

U] = k—

~ qua 0 =00 /RTH2(1 _ )2,

o
Eq. (8.21)gives the rate as a function 6fand N"2.
Expressingp™, on the other hand, in the form,

1-906
i

(8.21)

H_+—Y
0

according toEgs. (3.1) and (8.18)we have by

Egs. (8.17b), (8.19.H2), (8.20) and (8.28) the rate

p (8.22)

v of the reverse elementary reaction
kT CIH*

b1 = k— G e (@ 20/RTp2, (8.23)
h (‘](,,o)

The reverse rate is thus a function solelygof

32 ¢f. Section 3.3
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The above procedure of allowing for the mutual in-
teraction is applied to the theory of hydrogen electrode
process on nickel, with the rate-determinig step of the
catalysed atomization of hydrogen by Okamoto, Ho-
riuti and Hirota[1], who arrive at semi-quantitative
explanation of the process especially of Tafel's empir-
ical rule[36,37]

We now calculate the rate excluding the latter ap-
proximations but assuming instead that the interaction
between hydrogen atoms including those of critical
complex is significant only between directly neigh-
bouring ones.

We consider our assembl¢s g at a particular
state, that a groul of sites consisting of particular
o* and its direct neighbours shown enclosed by full
lines in Fig. 1, are unoccupied. The sites belonging
to ¥ are numbered as shown by annexed figures in
Fig. L

We now proceed to calculate, with reference to
QCx(0), 4%+ O0+(0) in Egs. (8.17a) and (8.17yhich
is expressed according Exs. (2.3) and (2.53s

: OCyuy
45+ @g*(O) = Q—CO (824)
QC o (HY) is given similarly as in Section 4.6

by

,,,,,

034606 _04+05+07+08 < 0405+6703
Ny 3 ’

x (8.25)
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wheren’s of the sitess3 andog on the one hand, and

of 04, 05, 07, andog and on the other hand are taken, 0

respectively, identical with each other, because of the G1 f 2_@® tr—11
2 61 1_51 — 51 '

symmetry of the figure.
QCp is given by

H 01+--+0g
(qa,())
H
61,...,08 p

03+0g _04+05+07+0g
X 13 Ny
% é—9495+9708+91(93+94+92+98)+92(95+96+97)

(8.26)

By Egs. (8.24)—(8.26y\ve have now

H*
2 H H\03+:+0g 03106 _0a+05+07+08 & 0,05+676
Aot 0 205 e0E /P HB3 on, gPabst0r0s

or by integration,

(8.31)

where6, andé, are, respectively, the degree of ad-
sorption at the time; andz,. Substitutingv,, and vy

of either approximation and estimating G, q?ﬁo,
q(';!o, o*, w, £* and & properly, we have the rela-
tion betweend andr accessible to the experimental
verification.

Actual calculation and its experimental verification

will be presented in a later paper.

H*
452 Oor(0) =

.....

For unknown constantgz and n4 we have on the
other hand the relation,

QCosy0) = QCu300 = QLCuy4(0) (8.28)

as inSection 4.6 because of physical identity of,
o3 andog.

QCo0), QCoy0), OF QCs, IS, respectively,
obtained by puttingd;, 63, or 64 in Eq. (8.26)at
zero.

QCo, ) in Eq. (8.28)and QCq in Eq. (8.26)are on
the other hand related tbaccording tcEgs. (2.5) and
(8.18) by

o — QCqy
QCo

(8.29)

Substituting nOWq:?@(,*(o) from Eq. (8.27)into
Eq. (8.17a)r Eq. (8.17b)and eliminatingp!, n3 and
n4 therefrom byEgs. (8.28) and (8.29)we have the
expression fo; as the function oVH2 andé or that
for v, as the function o®, respectively.

(8.27)
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